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(P)

(P) might be ill-posed!

(P) might have no solutions → introduce a discrepancy
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Intro : Inverse Problems

What about the stability to noise? ŷ = ȳ + ε

A noisy example

x† = arg min R(x)
arg minD(Ax ;ȳ)

(P)

x̄ ȳ = Ax̄ ŷ x̂†

We need to impose well-posedness!
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Regularization

Regularization is a parametrization of a low-dimensional subset of the
space of solutions, balancing between fitting the data/model.

We want a map (y , λ) ∈ Y × P 7→ {xλ(y)}λ∈P ⊂ X such that
1 lim

λ∈P
xλ(ȳ) = x†

2 ‖ŷ − ȳ‖ ≤ δ ⇒ ∃λδ ∈ P, ‖xλδ(ŷ)− x†‖ = O (δα)
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xλ(ȳ) = x†

2 ‖ŷ − ȳ‖ ≤ δ ⇒ ∃λδ ∈ P, ‖xλδ(ŷ)− x†‖ = O (δα)

A good regularization method is a method for which α is big.
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Regularization

x† = arg min R(x)
arg minD(Ax ;ȳ)

(P)

Which regularization method for our model problem?
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Regularization via Perturbation (Tikhonov)

Penalization method

xλ(y) := arg min
x∈X

λR(x) + D(Ax ; y) (Pλ)

In practice

↗ (Pλ1)
optim−→ xλ1 ↘

(P) → (Pλ2)
optim−→ xλ2 → reg. path

param. selec.−→ xλδ

↘ (Pλ3)
optim−−→ xλ3 ↗
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Regularization via Penalization (Tikhonov)

Penalization method

xλ(y) := arg min
x∈X

λR(x) + D(Ax ; y) (Pλ)

Example

λ = 1 λ = 0.3 λ = 0.01
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Regularization via Penalization (Tikhonov)

Penalization

xλ(y) := arg min
x∈X

λR(x) + D(Ax ; y) (Pλ)

Tikhonov regularization is a regularization method (linear case)

Assume R(x) = ‖x‖2, D(Ax ; y) = ‖Ax − y‖2 and x† ∈ Range(A∗).
Let ‖ŷ − ȳ‖ ≤ δ and x̂λ be generated by the data ŷ .

If λδ = O(δ), then
∥∥∥x̂λδ − x†

∥∥∥ . δ
1
2

the exponent 1/2 is optimal
very few results for other models...
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Iterative Regularization (Early stopping)

Early stopping
Take any (robust) algorithm solving directly (P): arg min R(x)

arg minD(Ax ;ȳ)

The regularization path is (xn)n∈N, the parameter is n.

In practice

(P)
optim−→ (xn)n∈N → reg. path

param. selec.−→ xnδ
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Iterative Regularization (Early stopping)

Early stopping
Take any (robust) algorithm solving directly (P): arg min

x∈arg minD(A·;y)
R(x)

The regularization path is {xn}, the parameter is n.

Example

n = 300 n = 500 n = 1000
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Iterative Regularization (Robust Optimization)

Early stopping
Take any (robust) algorithm solving directly (P): arg min R(x)

arg minD(Ax ;ȳ)

The regularization path is {xn}, the parameter is n.

The algorithm(s)
If D(Ax ; y) = ‖Ax − y‖2 the constraint is linear so the dual of (P) is:

min
u

R∗(−A∗u) + 〈u, y〉,

which could be solved by gradient on the dual:

xn = ∇R∗(−A∗un)

un+1 = un + τ(Axn − y).

NB: If R = ‖ · ‖2 it becomes the Landweber algorithm
xn+1 = xn − τA∗(Axn − y).
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Iterative Regularization (Robust Optimization)

Early stopping
Take any (robust) algorithm solving directly (P): arg min

x∈arg minD(A·;y)
R(x)

The regularization path is {xn}, the parameter is n.

Gradient descent is a regularization method

Assume R(x) = ‖x‖2, D(Ax ; y) = ‖Ax − y‖2 and x† ∈ Range(A∗).
Let ‖ŷ − ȳ‖ ≤ δ and x̂n be generated by the data ŷ via

x̂n+1 = x̂n − γA∗(Ax̂n − y).

If nδ = O(δ−1), then
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∥∥∥ . δ
1
2

Guillaume Garrigos 9/21



Iterative Regularization (Robust Optimization)

Early stopping
Take any (robust) algorithm solving directly (P): arg min R(x)

arg minD(Ax ;ȳ)

.

The regularization path is {xn}, the parameter is n.

Gradient Descent on the dual is a regularization [Matet et al., 2016]

Assume R(x) to be strongly convex, D(Ax ; y) = ‖Ax − y‖2 and
∂R(x†) ∩ Range(A∗) 6= ∅. Let ‖ŷ − ȳ‖ ≤ δ and x̂n be generated by the
data ŷ , via Gradient descent on the dual.

If nδ = O(δ−1), then
∥∥∥x̂nδ − x†

∥∥∥ . δ
1
2

What about other models for D ..?
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The learning setting

Let ρ be a distribution on X × Y (Y ⊂ R). We want to solve

arg min
w∈Hφ

∫
X×Y

(〈w , φ(x)〉 − y)2dρ(x , y) (P)

But we actually only have access to a sample of the data (xi , yi )
m
i=1.

This means that we pass from minimizing ‖Xw −Y ‖ to ‖Xmw −Ym‖.

Define a regularization method by looking at m→ +∞ instead of
δ → 0.
Under reasonable assumptions, the same type of results hold: both
Tikhonov and Gradient descent give optimal rates for
‖ŵλ(m) − w †‖ or ‖ŵn(m) − w †‖ [Caponetto, De Vito - 2006].
Other algorithms are regularizing, and other parameters are
regularizers (passes over the data [Rosasco, Villa - 2015]).
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Let’s make the point

arg min R(x)
arg minD(Ax ;ȳ)

(P)

Penalization and Early stopping are two different regularization
methods
Early stopping seems to have a better complexity in practice
Penalization lacks theoretical guarantees for general models.
It is not even clear which algorithm to use for early stopping in
general !!
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Iterative Regularization for general discrepancies D(Ax ; y)

When D(Ax ; y) 6= ‖Ax − y‖2, how to solve arg min R(x)
arg minD(Ax ;ȳ)

?

→ we cannot use the dual of (P)
→ Diagonal approach ! (Old idea, see e.g. Lemaire in the 80’s)
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Iterative Regularization for general discrepancies D(Ax ; y)

Diagonal method (heuristic)
Consider any algorithm xn+1 = Algo(xn, y , λ) for solving

xλ(y) := arg min
x∈X

λR(x) + D(Ax ; y) (Pλ)

Instead, do xn+1 = Algo(xn, y , λn) with λn → 0.
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• require to know the conditioning of D(A·; y). Might not exist.
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Our approach: Diagonal method on Dual problem

Take the dual of (Pλ) min
x

λR(x) + D(Ax ; y):

min
u

R∗(−A∗u) +
1
λ
D∗(λu; y). (Dλ)

Do a diagonal proximal-gradient (Forward-Backward) method on (Dλ),
with λn → 0:

xn = ∇R∗(−A∗un) (Dual-to-primal step)
wn+1 = un + τAxn (Forward step)

un+1 = wn+1 − τprox 1
τλn

D(·;y)

(
τ−1wn+1

)
(Backward step)

• Activates D only via its prox
• If R = J + (1/2)‖ · ‖2 then ∇R∗ = proxJ
• Does it work?
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Main result on Diagonal Dual Descent method

Assumptions

R is strongly convex and x̄ ∈ domR

D(·; ȳ) coercive and p-conditioned
Qualification condition: ∂R(x†) ∩ Range(A∗) 6= ∅

→ Qualification condition holds if R continuous at x† and Range(A∗)
closed.
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Main result on Diagonal Dual Descent method

Assumptions

R is strongly convex and x̄ ∈ domR

D(·; ȳ) coercive and p-conditioned
Qualification condition: ∂R(x†) ∩ Range(A∗) 6= ∅

Theorem: Optimization (aka no-noise case) [G., Rosasco, Villa - 2017]

Assume that λn → 0 fast enough (i.e. λn ∈ `
1

p−1 (N)). Let xn
generated from the true data ȳ . Then ‖xn − x†‖ = o(1/

√
n).
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Assume an additive discrepacy: D(Ax ; y) = L(Ax − y).

Theorem: Regularization [G., Rosasco, Villa - 2017]
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1

p−1 (N)), and
‖ŷ − ȳ‖ ≤ δ. Let x̂n generated from the noisy data ŷ .
Then ∃nδ = O(δ−2/3) s.t. ‖x̂nδ − x†‖ = O(δ1/3).

• Similar results for other discrepancies like DKL(Ax ; y)
• Less sharp results suggest that slower λn → 0 leads to larger nδ

but more accurate x̂nδ .
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Then ∃nδ = O(δ−2/3) s.t. ‖x̂nδ − x†‖ = O(δ1/3).

• Similar results for other discrepancies like DKL(Ax ; y)
• Less sharp results suggest that slower λn → 0 leads to larger nδ

but more accurate x̂nδ .

Guillaume Garrigos 15/21



Experiments

512× 512 images blurred and corrupted by impulse noise (35%
intensity)
D(Xw , y) = ‖Ax − y‖1 and F (x) = ‖Wx‖1 or ‖x‖TV
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Experiments

512× 512 image blurred and corrupted by impulse noise (35% intensity)
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Comments on the experiments

Early stopping VS penalization : who wins?

Early stopping achieves the same error reconstruction than the
Penalization method
Early stopping requires way less computations than ’stupid’
Penalization, but comparable to warm restart strategy
With Early stopping we have a direct control on the computations,
but not on the quality error: fix a budget of iterations, pick the
best solution
With Penalization it is the reverse: fix a stopping criterion for the
problems (Pλ), and let run the algorithm

How to choose the parameters ??

Any technique used for Penalization applies to Early stopping
In learning, cross-validation works very well
In imaging it’s more delicate (SURE? Discrepancy principle?)
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Conclusions

Early stopping is not limited to linear inverse problems but applies
to general models
Allows for better control of the computational costs than
penalization methods

What’s next? (work in progress)
Learning scenario (what if A↔ Am?)
Accelerated method: same reconstruction bound, but faster?
Removing the strong convexity assumption by using an other
algorithm?
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Conclusion

Thanks for your attention !
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