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Intro : Inverse Problems

An ill-posed inverse problem
Given A: X — Y, and y € Y we want to solve

xt'= argmin  R(x) (P)
arg min D(Ax;y)

(P) might be ill-posed!

@ (P) might have no solutions — introduce a discrepancy
D(Ax;y7) = [|Ax = y|l; [Ax = ¥l[1, or Dki(Ax;¥) -

o the solution xT might be not unique — introduce a prior
R(x) is a convex functional (||x||, ||Wx||1, [[Vx]....)

o (P) is our model.
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Intro : Inverse Problems

What about the stability to noise? y =y + ¢

A noisy example

xI'= argmin  R(x) (P)
arg min D(Ax;y)

We need to impose well-posedness!

Guillaume Garrigos a/21
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space of solutions, balancing between fitting the data/model.
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space of solutions, balancing between fitting the data/model.

We want a map (y,A) € Y x P — {xa(y)}aep C X such that
im xa(7) = x1
@ gl =
@ [y —yll<d=3 P, |x,() x| =0(5)
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Regularization

Regularization is a parametrization of a low-dimensional subset of the
space of solutions, balancing between fitting the data/model.

We want a map (y,A) € Y x P — {xa(y)}rep C X such that
lim x(7) = xt
o /\lefT;DXA()/) X
O [y-7l<s=3NeP, |x,0) x| =0(")

A good regularization method is a method for which « is big.
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Regularization

xt'= argmin  R(x) (P)
arg min D(Ax;y)

Which regularization method for our model problem?




Regularization via Perturbation (Tikhonov)
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xa(y) = argg;in AR(x) + D(Ax; y) (Py)
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In practice
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Regularization via Penalization (Tikhonov)

Penalization method

xa(y) :=argmin AR(x) 4+ D(Ax;y) (Py)
xeX

Example

A=0.3 A=0.01
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Regularization via Penalization (Tikhonov)

Penalization

xa(y) = arger;in AR(x) 4+ D(Ax; y) (Py)

Tikhonov regularization is a regularization method (linear case)

Assume R(x) = ||x||°>, D(Ax;y) = ||Ax — y||? and x' € Range(A*).
Let ||y — ¥|| < J and X, be generated by the data y.

If \s = O(6), then qué - XTH < 53

@ the exponent 1/2 is optimal

@ very few results for other models...




lterative Regularization (Early stopping)

Early stopping

Take any (robust) algorithm solving directly (P): argmin  R(x)
arg min D(Ax;y)

The regularization path is (x,)nen, the parameter is n.




lterative Regularization (Early stopping)

Early stopping

Take any (robust) algorithm solving directly (P): argmin  R(x)
arg min D(Ax;y)

The regularization path is (x,)nen, the parameter is n.

In practice

optim param. selec.
—

(P) — (xn)nen — reg. path Xns




lterative Regularization (Early stopping)

Early stopping

Take any (robust) algorithm solving directly (P): argmin  R(x)
x€arg min D(A-;y)

The regularization path is {x,}, the parameter is n.

Example

n =300 n =500




lterative Regularization (Robust Optimization)

Early stopping

Take any (robust) algorithm solving directly (P): argmin  R(x)
arg min D(Ax;y)

The regularization path is {x,}, the parameter is n.

The algorithm(s)
If D(Ax;y) = |Ax — y||? the constraint is linear so the dual of (P) is:

min R*(—A*U) + <u))/>7

u

which could be solved by gradient on the dual:

xn = VR*(—=A*u,)
Upt1 = Up + 7(Axp — y).

NB: If R = || - || it becomes the Landweber algorithm
Xpt1 = Xp — TA*(Axp — y).




lterative Regularization (Robust Optimization)

Early stopping

Take any (robust) algorithm solving directly (P): argmin  R(x)
x€arg min D(A-;y)

The regularization path is {x,}, the parameter is n.

Gradient descent is a regularization method

Assume R(x) = ||x||>, D(Ax;y) = ||Ax — y||? and xT € Range(A*).
Let ||y — 7|l < ¢ and %, be generated by the data y via
>?n+1 — )?n - '}’A*(A)?n - }/)-

If ns = O(0~ %), then ’




lterative Regularization (Robust Optimization)

Early stopping

Take any (robust) algorithm solving directly (P): argmin  R(x)
arg min D(Ax;y)

The regularization path is {x,}, the parameter is n.

Gradient Descent on the dual is a regularization [Matet et al., 2016]

Assume R(x) to be strongly convex, D(Ax;y) = ||Ax — y||* and
OR(x") N Range(A*) # . Let ||y — y|| < 6 and X, be generated by the
data y, via Gradient descent on the dual.

If ns = O(01), then )

1
Eon —XTH NYE

What about other models for D ..7
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The learning setting

Let p be a distribution on X x Y (¥ C R). We want to solve

arg min / (w. 6(x)) — y)?dp(x.y) (P)
XxY

WEH¢

But we actually only have access to a sample of the data (x;, ;)™ ;.

This means that we pass from minimizing || Xw — Y| to || X™w — Y™||.

o Define a regularization method by looking at m — +oo instead of
6 — 0.
@ Under reasonable assumptions, the same type of results hold: both

Tikhonov and Gradient descent give optimal rates for
W (m) — wi| or [ Wi(m) — w'|| [Caponetto, De Vito - 2006].

o Other algorithms are regularizing, and other parameters are
regularizers (passes over the data [Rosasco, Villa - 2015]).




Let's make the point

argmin  R(x) (P)
argmin D(Ax;¥)

Penalization and Early stopping are two different regularization
methods

Early stopping seems to have a better complexity in practice

Penalization lacks theoretical guarantees for general models.

It is not even clear which algorithm to use for early stopping in
general !l
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lterative Regularization for general discrepancies D(Ax; y)

When D(Ax;y) # ||Ax — y||?, how to solve argmin R(x) ?
arg min D(Ax;y)

— we cannot use the dual of (P)
— Diagonal approach | (Old idea, see e.g. Lemaire in the 80's)




lterative Regularization for general discrepancies D(Ax; y)

Diagonal method (heuristic)
Consider any algorithm x,+1 = Algo(x,, y, A) for solving

xA(y) == argmin AR(x) + D(Ax; y)
xeX

Instead, do xp+1 = Algo(xn, y, An) with A, — 0.
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lterative Regularization for general discrepancies D(Ax; y)

Diagonal method (heuristic)
Consider any algorithm x,+1 = Algo(x,, y, A) for solving

x(y) = arger)n(in AR(x) + D(Ax; y) (Py)

Instead, do xp+1 = Algo(xn, y, An) with A, — 0.
e Includes the warm restart strategy
e See [Attouch, Czarnecki, Peypouquet,...] about diagonal FB

Issues
e How to deal with D(A-; y) if D nonsmooth and A # Id?
e require to know the conditioning of D(A-; y). Might not exist.




QOur approach: Diagonal method on Dual problem

Take the dual of (Py) min AR(x) + D(Ax; y):
min R*(—A*u) + XD (Au; y). (Dy)

Do a diagonal proximal-gradient (Forward-Backward) method on (D)),
with A\, — 0:

xn = VR*(—A%up) (Dual-to-primal step)
Wpi1 = Up + TAXp (Forward step)
Untl = Wnil — TPIOX_1 p.y (T_lw,,H) (Backward step)

TAn




QOur approach: Diagonal method on Dual problem

Take the dual of (Py) min AR(x) + D(Ax; y):

min R*(—A*u) + %D*()\u;y). (Dy)

u

Do a diagonal proximal-gradient (Forward-Backward) method on (D)),
with A\, — 0:

xn = VR*(—A%up) (Dual-to-primal step)
Wpi1 = Up + TAXp (Forward step)
Upt1 = Wnt1 = TPIOX 1 () (T_1Wn+1) (Backward step)

e Activates D only via its prox
o lf R=J+(1/2) -||* then VR* = prox,
e Does it work?




Main result on Diagonal Dual Descent method

Assumptions

@ R is strongly convex and X € dom R
e D(-;y) coercive and p-conditioned
o Qualification condition: OR(x") N Range(A*) # ()

— Qualification condition holds if R continuous at x! and Range(A*)
closed.
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Theorem: Optimization (aka no-noise case) [G., Rosasco, Villa - 2017]

Assume that A, — 0 fast enough (i.e. A\, € éﬁ(N)) Let x,
generated from the true data y. Then |x, — x| = o(1/+/n).
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Main result on Diagonal Dual Descent method

Assumptions

@ R is strongly convex and X € dom R
@ D(-;y) coercive and p-conditioned
o Qualification condition: OR(x") N Range(A*) # ()

Assume an additive discrepacy: D(Ax;y) = L(Ax —y).

Theorem: Regularization [G., Rosasco, Villa - 2017]

Assume that A, — 0 fast enough (i.e. A\, € Kﬁ(N)) and

|y — ¥|| <4. Let X, generated from the noisy data y.
Then 3ns = O(672/3) s.t. ||%, — xT|| = O(5Y/3).

e Similar results for other discrepancies like Dk (Ax; y)
e Less sharp results suggest that slower A\, — 0 leads to larger ng
but more accurate Xp;.




512 x 512 images blurred and corrupted by impulse noise (35%
intensity)
D(Xw,y) = [|Ax — y[l» and F(x) = [[Wx]|1 or [Ix] v




Experiments
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Experiments

512 x 512 image blurred and corrupted by impulse noise (35% intensity)

t=10




Comments on the experiments

Early stopping VS penalization : who wins?

o Early stopping achieves the same error reconstruction than the
Penalization method

o Early stopping requires way less computations than 'stupid’
Penalization, but comparable to warm restart strategy

e With Early stopping we have a direct control on the computations,
but not on the quality error: fix a budget of iterations, pick the
best solution

o With Penalization it is the reverse: fix a stopping criterion for the
problems (P,), and let run the algorithm




Comments on the experiments

Early stopping VS penalization : who wins?
o Early stopping achieves the same error reconstruction than the
Penalization method

o Early stopping requires way less computations than 'stupid’
Penalization, but comparable to warm restart strategy

e With Early stopping we have a direct control on the computations,
but not on the quality error: fix a budget of iterations, pick the
best solution

o With Penalization it is the reverse: fix a stopping criterion for the
problems (P,), and let run the algorithm

How to choose the parameters 77

@ Any technique used for Penalization applies to Early stopping

@ In learning, cross-validation works very well

@ In imaging it's more delicate (SURE? Discrepancy principle?)




Conclusions

@ Early stopping is not limited to linear inverse problems but applies
to general models

@ Allows for better control of the computational costs than
penalization methods

What's next? (work in progress)
@ Learning scenario (what if A <+ Ap,?)
o Accelerated method: same reconstruction bound, but faster?

@ Removing the strong convexity assumption by using an other
algorithm?




Conclusion

Thanks for your attention !
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