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The problem, the algorithm
Let fi : RN → R be convex, and minimize

min
x∈RN

f(x) = 1

m

m∑
i=1

fi(x).

with the Stochastic Gradient Descent ﴾SGD﴿ algorithm

xt+1 = xt − γt∇fit(xt), γt > 0, it ∼ U(1, . . . ,m)

3 / 38



The problem, the algorithm
Let fi : RN → R be convex, and minimize

min
x∈RN

f(x) = 1

m

m∑
i=1

fi(x).

with the Stochastic Gradient Descent ﴾SGD﴿ algorithm

xt+1 = xt − γt∇fit(xt), γt > 0, it ∼ U(1, . . . ,m)

Rk: You can consider f(x) = Eξ [f(ξ, x)] with ξ ∼ D if you want

Rk: You can do minibatches if you want, the story will remain the same

3 / 38



The problem, the algorithm
Let fi : RN → R be convex, and minimize

min
x∈RN

f(x) = 1

m
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fi(x).

with the Stochastic Gradient Descent ﴾SGD﴿ algorithm

xt+1 = xt − γt∇fit(xt), γt > 0, it ∼ U(1, . . . ,m)

Rk: You can consider f(x) = Eξ [f(ξ, x)] with ξ ∼ D if you want

Rk: You can do minibatches if you want, the story will remain the same

Goal: How to tune properly the stepsize γt?
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I : Stochastic Gradient Descent
1 : The smooth case
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Smooth case: Known results (1)
Theorem ﴾Constant stepsize﴿

Let fi ∈ Γ0(RN) ∩ C1,1
L (RN) and x̄T = 1

T
∑T−1

t=0 xt. If γt ≡ γ < 1/L then

E
[
f(x̄T)− inf f

]
ď

D2

2γT +
γ

2(1− γL)σ
2
∗,

where D := ∥x0 − x∗∥ and σ2
∗ := V[∇fi(x∗)] for x∗ ∈ argmin f.

GD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation. Gower, Sebbouh, Loizou, 2021.

New Tight Bounds for SGD without Variance Assumption: A Computer‐Aided Lyapunov Analysis. Cortild, Ketels, Peypouquet, Garrigos, 2025.

• γ can go up to 2
L , requires knowing L

• σ2
∗ = 0 in the deterministic case ﴾not only!﴿, we recover classic results
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Interlude : Interpolation
Definition ﴾Interpolation constants﴿

• σ2
∗ := V[∇fi(x∗)] for x∗ ∈ argmin f,

• ∆∗ := inf f− E [inf fi]

Proposition
Assume that the fi are convex and smooth. Then σ2

∗,∆∗ ě 0 and

σ2
∗ = 0 ⇔ ∆∗ = 0 ⇔

m∩
i=1

argmin fi ̸= ∅
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Interlude : Interpolation
σ2
∗ := V[∇fi(x∗)], ∆∗ := inf f− E [inf fi]

Example ﴾Linear model﴿
Suppose that we have a linear model ﴾least squares problem﴿:

fi(x) =
1

2
(⟨ϕi, x⟩ − yi)2 , f(x) = 1

2m∥Φx− y∥2, Φ = (ϕi)i

Interpolation means that there is an hyperplane supported by x∗ which
contains every data point (ϕi; yi)i. Always true if Φ surjective.
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Interlude : Interpolation
σ2
∗ := V[∇fi(x∗)], ∆∗ := inf f− E [inf fi]

Example ﴾Neural Networks﴿
It is shown ﴾Belkin et al.﴿ that Neural Networks with a very very large
number of parameters interpolate ﴾conditions apply﴿.
This is sometimes observed in practice.
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Smooth case: Known results (1)
Theorem ﴾Constant stepsize﴿

Let fi ∈ Γ0(RN) ∩ C1,1
L (RN) and x̄T = 1

T
∑T−1

t=0 xt. If γt ≡ γ < 1/L then

E
[
f(x̄T)− inf f

]
ď

D2

2γT +
γ

2(1− γL)σ
2
∗,

where D := ∥x0 − x∗∥ and σ2
∗ := V[∇fi(x∗)] for x∗ ∈ argmin f.

• SGD does not converge with constant stepsizes ﴾complexity available﴿
• γ ∝ 1√

T gives a finite horizon rate of O(D2+σ2
∗√

T ), not optimal

• γ ∝ 1√
σ2
∗T+1

gives a better rate O(D2

T + σ2
∗√
T) not adaptive to σ2

∗
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Smooth case: Known results (2)
Theorem ﴾Vanishing stepsize﴿

Let fi ∈ Γ0(RN) ∩ C1,1
L (RN) and x̄T = 1

T
∑T−1

t=0 xt. If γt ∝ 1√
t ď 1/4L then

E
[
f(x̄T)− inf f

]
ď O

(
D2

√
T
+

log(T)
T σ2

∗

)
,

where D := ∥x0 − x∗∥ and σ2
∗ := V[∇fi(x∗)] for x∗ ∈ argmin f.

• This is an asymptotic convergence rate
• Still not optimal if σ∗ = 0
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Smooth case: what we really want

Ideally we want

E
[
f(x̄T)− inf f

]
ď O

(
D2

√
T
+

1

Tσ
2
∗

)

where γ does not need to know σ2
∗ . And possibly neither L.

• Adaptivity to L is standard for GD ﴾linesearch﴿ but uncommon for SGD
• Adaptivity to σ2

∗ is not really investigated ﴾?﴿
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I : Stochastic Gradient Descent
2 : The nonsmooth case
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Nonsmooth case: Known results
Theorem ﴾Constant stepsize﴿

Let fi ∈ Γ0(RN) be G‐Lipschitz and x̄T = 1
T
∑T−1

t=0 xt. If γt ≡ γ then

E
[
f(x̄T)− inf f

]
ď

D2

2γT +
γG2

2
.

• No conditions on γt

• Remains true if fi are not differentiable ﴾use subgradients﴿
• no interpolation story here

• γ = 1√
T gives a finite horizon rate of D2+G2

2
√
T

• γ = D
G
√
T gives an optimal rate of DG

2
√
T , requires knowing D,G

• Adaptive methods attempt to do this while ignoring D or G
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Nonsmooth case: what we really want
Ideally we want to keep

E
[
f(x̄T)− inf f

]
ď O

(
DG√
T

)

where γ does not need to know D,G.

• Adaptivity to G ﴾knowing D﴿ is achieved e.g. by Adagrad γt =
γD√∑
s ∥gs∥2

• Adaptivity to D ﴾knowing G﴿ is achieved with coin‐betting ﴾online﴿
• Interesting recent litterature in the deterministic setting [D‐adaptation, DoG, DoWG]

• Not yet mature in the stochastic setting?

Stochastic Gradient Descent The nonsmooth case 14 / 38



II : Stochastic Polyak Stepsize
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II : Stochastic Polyak Stepsize
1 : Warm-up : Deterministic Polyak Stepsize
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Polyak Stepsize
In the deterministic setting ﴾m = 1﴿ Polyak proposed the following rule

γt :=
f(xt)− inf f
∥∇f(xt)∥2

• Updates are scale‐invariant: γt∇f(xt) has no units ﴾Adam, Adagrad, ..﴿
• We need to know inf f !!

◦ In the worst cases, this is as hard as minimizing f
◦ In some cases ﴾think interpolation﴿ we know that inf f = 0

◦ this is in general unreasonable
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Polyak Stepsize
In the deterministic setting ﴾m = 1﴿ Polyak proposed the following rule

γt :=
f(xt)− inf f
∥∇f(xt)∥2

Theorem ﴾Polyak ‐ 1987 & Hazad, Kakade ‐ 2019﴿
When using the Polyak stepsize, we can guarantee:
1. f(xT)− inf f ď 2LD2

T in the smooth case
2. f(xT)− inf f ď DG√

T in the nonsmooth case

Bounds are “optimal” and adaptive to L, D, G!

Stochastic Polyak Stepsize Warm‐up : Deterministic Polyak Stepsize 17 / 38



Polyak Stepsize
In the deterministic setting ﴾m = 1﴿ Polyak proposed the following rule

γt :=
f(xt)− inf f
∥∇f(xt)∥2

Where does this come from? The analysis of the Lyapunov energy:

∥xt+1 − x∗∥2 − ∥xt − x∗∥2 ď γ2∥∇f(xt)∥2 − 2γ
(
f(xt)− f(x∗)

)
Upper bound is minimized if γt is the Polyak stepsize.
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II : Stochastic Polyak Stepsize
2 : Our proposal for SGD
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The Stochastic Polyak Stepsize (SPS)
The same Lyapunov analysis leads to

∥xt+1 − x∗∥2 − ∥xt − x∗∥2 ď γ2∥∇fit(xt)∥2 − 2γ
(
fit(xt)− fit(x∗)

)
The upper bound is minimized if:

γt :=
(fit(xt)− fit(x∗))+

∥∇fit(xt)∥2

• fit(x∗) is impossible to know exactly ... except if there is interpolation
• γt can be 0 if xt is too good at minimizing fit
• the distance to minimizers is decreasing which is unheard of for SGD
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SPS : An alternative definition
γt :=

(fit(xt)− fit(x∗))+
∥∇fit(xt)∥2
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Newton‐Raphson : sample & project onto linearization of the constraints

xt+1 = argmin ∥x− xt∥2 s.t. fit(xt) + ⟨∇fit(xt), x− xt⟩ ď fit(x∗)

• Those iterates are exactly the ones of SGD+SPS
• No convexity needed for this formulation ﴾but ̸= problem﴿

Stochastic Polyak Stepsize Our proposal for SGD 20 / 38



SPS : the smooth case
Theorem

Let fi ∈ Γ0(RN) be locally smooth and x̄T = 1
T
∑T−1

t=0 xt. Then

E
[
f(x̄T)− inf f

]
ď

4LD2

T +
2Dσ∗√

T
,

where L is the worst Lipschitz constant of ∇fi over B(x∗,D).

• This is an asymptotic 1√
T rate, with no log terms

• Nearly optimal in the interpolation regime, adaptive to σ2
∗, L,D

• No need for global smoothness!
• If f = Efξ , ask locally smooth to be uniform in ξ
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SPS : the nonsmooth case
Theorem

Let fi ∈ Γ0(RN) be locally lipschitz and x̄T = 1
T
∑T−1

t=0 xt. Then

E
[
f(x̄T)− inf f

]
ď

DG√
T
,

where G is the worst Lipschitz constant of fi over B(x∗,D).

• This is an asymptotic 1√
T rate

• Nearly optimal for this class of problem, adaptive to G,D
• No need for global Lipschitz!
• If f = Efξ , ask instead local expected lipschitz

Stochastic Polyak Stepsize Our proposal for SGD 22 / 38



II : Stochastic Polyak Stepsize
3 : Can we run this in practice ???
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SPS for large NNs

For large ﴾enough﴿ models, interpolation holds, meaning that fi(x∗) = inf fi
So it is worth trying the cheap rule γt =

fit (x
t)−inf fi

∥∇fit (xt)∥2

Usually inf fi = 0 except for regularized problems where the extra ∥x∥2
perturbs the minima. But we can still compute the infimum[Loizou et al.]
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SPS with approximation : optimistic version
A reasonable approach consists in replacing fi(x∗) with an approximation

One could hope that interpolation holds, and use inf fi even if it is illegal

Theorem ﴾Loizou et al. ‐ 2021﴿

Let fi be convex and L‐smooth. If γt := max
{

fit (x
t)−inf fi

∥∇fit (xt)∥2
; γ̄

}
then

E
[
f(x̄T)− inf f

]
ď O

(
D2

γ̄T +∆∗
)

where ∆∗ = E [fi(x∗)− inf fi] = inf f− E [inf fi].

We pay the error we make on estimating fi(x∗)
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SPS with approximation : educated version
A reasonable approach consists in replacing fi(x∗) with an approximation

One could hope that interpolation holds, and use inf fi even if it is not legal

We could build a more precise estimation of fi(x∗)

Example ﴾Black‐box model distillation﴿
Train a small model ﴾student﴿ with a pretrained bigger model ﴾teacher﴿.
If the weights of the teacher are good, it should happen that

fi(x∗) ≃ fi(xtea) ď fi(xstu)

So we can use fi(xtea) as a surrogate for fi(x∗).
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Numerical experiment : Distillation

SGD ﴾gray﴿, Adam ﴾Orange﴿, SPS+Mom ﴾Blue﴿, SPS+Adam ﴾Dark blue﴿
Dotted lines : scheduler ﴾warmup + cosine decay﴿
Datasets: 300K, 1M, 2M tokens
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SPS with approximation : on-the-fly version
Remember that SGD+SPS is Newton applied to the feasability problem

(∀i ∈ {1, . . . ,m}) fi(x) ď fi(x∗)

We could be creative and introduce an other problem without fi(x∗) such as:

min
x∈Rn,s∈Rm

1

m

m∑
i=1

si s.t. fi(x) ď si.

Not only do we need to project on linearization of the constraints, but also
take into account the objective function. This leads to a stochastic proximal
method:

xt+1, st+1 = argmin si + ∥(x, s)− (xt, st)∥2 s.t. fi(xt) + ⟨∇fi(xt), x− xt⟩ ď si
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SPS with approximation : on-the-fly version
xt+1, st+1 = argmin si + ∥(x, s)− (xt, st)∥2 s.t. fi(xt) + ⟨∇fi(xt), x− xt⟩ ď si

• This algorithm ﴾FUVAL﴿ admits a closed form solution ﴾nasty﴿
• sti tries to converge to fi(w∗)

• Extra parameters needed for the theory to work ﴾boooo﴿
• Can garantee a dirty O

(
1√
T

)
rate in the nonsmooth case

• Can guarantee a O
(
1
T +∆∗

)
rate in the smooth case

• Numerics aren’t great
• To be improved! Stochastic prox methods are not well understood...
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II : Stochastic Polyak Stepsize
4 : Would you want some momentum?
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Adam is SGD + AdaGrad + Momentum. Replace Adagrad with SPS?
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Adam is SGD + AdaGrad + Momentum. Replace Adagrad with SPS?

Momentum ﴾v1 : Heavy Ball﴿

yt = xt + βt(xt − xt−1)

xt+1 = yt − γ∇fit(xt)

Momentum ﴾v2 : Classic﴿

mt = βtmt−1 +∇fit(xt)
xt+1 = xt − γmt

Momentum ﴾v3 : Iterative Moving Average﴿

zt = zt−1 − ηt∇fit(xt)
xt+1 = (1− αt)xt + αtzt
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Momentum : Known result
Theorem

Let fi ∈ Γ0(RN) ∩ C1,1
L (RN) and run IMA with ηt ≡ η ď 1

4L and αt =
2

2+t .

E
[
f(xT)− inf f

]
ď

D2

ηT + 2ησ2
∗,

• Exact same bound as SGD constant stepsize
• Momentum provides last iterate bounds
• No known acceleration
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Momentum + SPS : Smooth case
Theorem

Let fi convex and locally smooth, and run IMA with ηt = SPS and αt =
1

1+t .

E
[
f(xT)− inf f

]
ď

2LD2 log(T)
T +

2
√
L∆∗D√
T

,

• Like SGD+SPS but with last iterates
• Spurious log term ﴾boooo﴿
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Momentum + SPS : Nonsmooth case
Theorem

Let fi convex and locally Lipschitz, run IMA with ηt = SPS and αt =
1

1+t :

E
[
f(xT)− inf f

]
ď

GD√
T
.

• Like SGD+SPS but with last iterates
• No spurious log term ﴾yay﴿
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What is SPS for momentum?
If you really want to know:

Definition ﴾Momentum + SPS﴿
ηt =

(fit (x
t)−fit (x

∗)+⟨∇fik (xk),zt−1−xt⟩)
+

∥∇fik (xk)∥
2

zk = zt−1 − ηt∇fik(xk)
xk+1 = (1− αk)xk + αkzk

We can also do SPS for Adam!
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Conclusion
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Conclusion on SPS

• Theory: great
◦ Nearly optimal rates in both smooth and nonsmooth
◦ Adaptivity to all parameters ﴾except fi(x∗)﴿

• Practice: disputable
◦ Can’t be used as is in every scenario
◦ Some promising edge cases ﴾interpolation, distillation﴿
◦ Need for more analysis when approximating fi(x∗)
◦ Need more algorithms like FUVAL with on‐the‐fly tracking of fi(x∗)
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Thanks for your attention !
Any questions?
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