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The problem, the algorithm

Let f; : RN — R be convex, and minimize

min 0= 1,310

with the Stochastic Gradient Descent (SGD) algorithm

Xey1 = Xe — VeVii(X), 7% >0, i ~U(1,

.,m)
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The problem, the algorithm

Let f; : RN — R be convex, and minimize

min f(x) Zf,
with the Stochastic Gradient Descent (SGD) algorithm

Xer1 = Xe — Vi (x), % >0, ~U,...,m)

Rl You can consider f(x) = E¢ [f(£, x)] with £ ~ D if you want

Rl You can do minibatches if you want, the story will remain the same
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The problem, the algorithm

Let f; : RN — R be convex, and minimize

min f(x) Zf,
with the Stochastic Gradient Descent (SGD) algorithm

Xer1 = Xe — Vi (x), % >0, ~U,...,m)

Rl You can consider f(x) = E¢ [f(£, x)] with £ ~ D if you want
Rl You can do minibatches if you want, the story will remain the same

Goal: How to tune properly the stepsize ~;?
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| : Stochastic Gradient Descent
1 : The smooth case
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Smooth case: Known results (1)

Theorem (Constant stepsize)

Let f; € To(RY) N C/M(RY) and X7 = L") ¥t If v = v < 1/L then

_ . D?
E [f(x") —inff] < 27T+ 2(11%)03,

where D := ||x* — x*|| and o2 := V[Vf;(x*)] for x* € argmin f.

GD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation. Gower, Sebbouh, Loizou, 2021.
New Tight Bounds for SGD without Variance Assumption: A Computer-Aided Lyapunov Analysis. Cortild, Ketels, Peypouquet, Garrigos, 2025.
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Smooth case: Known results (1)

Theorem (Constant stepsize)

Let f; € To(RY) N C/M(RY) and X7 = L") ¥t If v = v < 1/L then
_ . D? o

N 2

E [f(x") — inff] < 27T+2(1—7L)U*’

where D := ||x* — x*|| and o2 := V[Vf;(x*)] for x* € argmin f.

® 7 can go up to , requires knowing L

® 02 =0 in the deterministic case (not only!), we recover classic results
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Interlude : Interpolation

Definition (Interpolation constants)

e o2 :=V[Vf(x*)] for x* € argmin f,
e A, = inff—E[inff]

Assume that the f; are convex and smooth. Then o2, A, > 0 and

0l=0 & A, =0 & (argminf; #0

i=1
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Interlude : Interpolation
02 = V[VFi(x*)], A, := inff — E [inff]

Example (Linear model)

Suppose that we have a linear model (least squares problem):

) = X ((6050) — )2 _ Lox—vi2 = (4)
F00 = 5 (00 =0, ) = 5 llex—yl?, &= (6
Interpolation means that there is an hyperplane supported by x* which

contains every data point (¢; ;)i Always true if ® surjective.
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Interlude : Interpolation

0% = V[VE(x)], A, := inff — E [inff]

Example (Neural Networks)

It is shown (Belkin et al.) that Neural Networks with a very very large
number of parameters interpolate (conditions apply).
This is sometimes observed in practice.
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Smooth case: Known results (1)

Theorem (Constant stepsize)

Let f; € To(RY) N C/M(RY) and X7 = L") ¥t If v = v < 1/L then
_ . D? ~
A 2
E [f(x") — inff] < 27T+2(1—7L)U*’

where D := ||x* — x*|| and o2 := V[Vf;(x*)] for x* € argmin f.

® SGD does not converge with constant stepsizes (complexity available)
D? +a

® Y X = glves a finite horizon rate of O(=%*), not optimal

® v \/m gives a better rate O(T ﬁ) not adaptive to o2
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Smooth case: Known results (2)

Theorem (Vanishing stepsize)

Let f; € To(RY) N €' (RN) and X" = 3 3°7) X If ¢ oc 22 < 1/4L then

E[f(') — inff] < O (% . _'°9T<T>(,3) |

where D := ||x* — x*|| and 02 := V[V[i(x*)] for x* € argmin f.

e This is an asymptotic convergence rate

e Still not optimal if o, =0
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Smooth case: what we really want

Ideally we want

E [f(x") —inff] <O <D72T + lTaf)

where v does not need to know 2. And possibly neither L.

e Adaptivity to L is standard for GD (linesearch) but uncommon for SGD

e Adaptivity to o2 is not really investigated (?)
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| : Stochastic Gradient Descent
2 : The nonsmooth case
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Nonsmooth case: Known results

Theorem (Constant stepsize)

Let f; € T'o(RN) be G-Lipschitz and x™ = = ZtT let If v = v then
_ D? ~G?

E [f(x") —inff] < 27T+T'
® No conditions on ~;

® Remains true if f; are not differentiable (use subgradients)
® no interpolation story here
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Nonsmooth case: Known results

Theorem (Constant stepsize)

Let f; € T'o(RN) be G-Lipschitz and x™ = = Ztr let If v = v then

_ D?*> ~G?
E — inf —
) —inff] < o7+ 5
o y= %r gives a finite horizon rate of D;}‘T;Q

® = Gﬁ gives an optimal rate of 2%, requires knowing D, G

\ﬁ"
e Adaptive methods attempt to do this while ignoring D or G
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Nonsmooth case: what we really want

Ideally we want to keep

E [f(x) —inff] <O (DTCD

where ~ does not need to know D, G.

Adaptivity to G (knowing D) is achieved e.g. by Adagrad ~; = Zﬁg E

Adaptivity to D (knowing G) is achieved with coin-betting (online)

Interesting recent litterature in the deterministic setting -adaptation, bos, bowa;

Not yet mature in the stochastic setting?
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Il : Stochastic Polyak Stepsize
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Il : Stochastic Polyak Stepsize

1 : Warm-up : Deterministic Polyak Stepsize
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Polyak Stepsize

In the deterministic setting (m = 1) Polyak proposed the following rule

- f(xt) —inff
TV

e Updates are scale-invariant: 7:Vf(x;) has no units (Adam, Adagrad, ..)
® We need to know inff!!

o In the worst cases, this is as hard as minimizing f
© In some cases (think interpolation) we know that inff =0
o this is in general unreasonable

Stochastic Polyak Stepsize Warm-up : Deterministic Polyak Stepsize 17/ 38



Polyak Stepsize

In the deterministic setting (m = 1) Polyak proposed the following rule

o f(xf) —inff
BN ESIE

Theorem (Polyak - 1987 & Hazad, Kakade - 2019)

When using the Polyak stepsize, we can guarantee:
1. f(x™) — inff < 2% in the smooth case

2. f(x7) —inff < 22 in the nonsmooth case

Bounds are “optimal” and adaptive to L, D, G!
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Polyak Stepsize

In the deterministic setting (m = 1) Polyak proposed the following rule

- f(xt) —inff
TV

Where does this come from? The analysis of the Lyapunov energy:

I =[P = [l =X < A2 Vx)” = 27 (F) — fix7))

Upper bound is minimized if -, is the Polyak stepsize.
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Il : Stochastic Polyak Stepsize
2 : Our proposal for SGD
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The Stochastic Polyak Stepsize (SPS)

The same Lyapunov analysis leads to
I =2 = X =X < A2 IVE 0N = 27 (Fi() — filx)
The upper bound is minimized if:

o B0 i),
N\ APSTE

e f.(x*) is impossible to know exactly ... except if there is interpolation
® ~ can be 0 if x' is too good at minimizing f;,

e the distance to minimizers is decreasing which is unheard of for SGD
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SPS : An alternative definition
(F,0¢) — F,(¢),

AN ArOIE
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SPS : An alternative definition

Yo = (flt(xt) _fl't(x*))-{-
" IV (x)|?

Given a solution x*, our problem is equivalent to find x such that

Vie{l,....m}) fi(x) <fi(x)
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SPS : An alternative definition

. (fi 0) — fiu(x).
. IV, ()

Given a solution x*, our problem is equivalent to find x such that
(Vie{l,...,m}) fix) <fi(x")

Newton-Raphson : sample & project onto linearization of the constraints

X1 = argmin [|x — x'||* s.t. f;, (<) + (Vf, (X)), x — x*) < f,(x*)
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SPS : An alternative definition

. (fi 0) — fiu(x).
. IV, ()

Given a solution x*, our problem is equivalent to find x such that

(Vie{l,....m}) filx) <filx)

Newton-Raphson : sample & project onto linearization of the constraints
X1 = argmin [|x — x'||* s.t. f;, (<) + (Vf, (X)), x — x*) < f,(x*)

® Those iterates are exactly the ones of SGD+SPS

® No convexity needed for this formulation (but # problem)
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SPS : the smooth case

Let f; € Ty (RV) be locally smooth and x™ = 1 37" ' x*. Then
4LD?>  2Do
E [f(x") —inff] < — + —=,
o)~ inff] < =5+ 22
where L is the worst Lipschitz constant of Vf; over B(x*, D).
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SPS : the smooth case

Let f; € Ty (RV) be locally smooth and x™ = 1 37" ' x*. Then

2 g
B [fix) —inff] < -+ 22

where L is the worst Lipschitz constant of Vf; over B(x*, D).

This is an asymptotic 77 rate, with no log terms

Nearly optimal in the interpolation regime, adaptive to o2, L, D

No need for global smoothness!

If f = Efe, ask locally smooth to be uniformin ¢
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SPS : the nonsmooth case

Let f; € Ty (RV) be locally lipschitz and X = L 3"/ xt. Then
DG
E [f(x") —inff] < —,

where G is the worst Lipschitz constant of f; over B(x*, D).

This is an asymptotic — rate

Nearly optimal for this class of problem, adaptive to G, D

No need for global Lipschitz!

If f = Efe, ask instead local expected lipschitz
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Il : Stochastic Polyak Stepsize

3 : Can we run this in practice ???
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SPS for large NNs

For large (enough) models, interpolation holds, meaning that f;(x*) = inff;

b —inff,
BRNAGIE

Usually inff; = 0 except for regularized problems where the extra ||x||?
perturbs the minima. But we can still compute the infimum!teizouetall

So it is worth trying the cheap rule ~;
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SPS with approximation : optimistic version

A reasonable approach consists in replacing f;(x*) with an approximation

One could hope that interpolation holds, and use inff; even if it is illegal

Theorem (Loizou et al. - 2021)

Let f; be convex and L-smooth. If 7; := max {%’ 7} then
3

E [f(X") —inff] <O (5;+A )
where A* = E [fi(x*) — inff;] = inff — E[inff].

We pay the error we make on estimating f;(x*)

Stochastic Polyak Stepsize Can we run this in practice ??? 25/38



SPS with approximation : educated version

A reasonable approach consists in replacing f;(x*) with an approximation

We could build a more precise estimation of f;(x*)

Example (Black-box model distillation)

Train a small model (student) with a pretrained bigger model (teacher).
If the weights of the teacher are good, it should happen that

filx") ~ fi(x*?) < fi(x™)

So we can use f;(x'®?) as a surrogate for f;(x*).
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Numerical experiment : Distillation

0.0 0.2 04 0.6 0.8 10 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Epoch Epoch Epoch

tinyShakespeare PTB Wikitext2

SGD (gray), Adam (Orange), SPS+Mom (Blue), SPS+Adam (Dark blue)
Dotted lines : scheduler (warmup + cosine decay)
Datasets: 300K, 1M, 2M tokens
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SPS with approximation : on-the-fly version
Remember that SGD+SPS is Newton applied to the feasability problem
(Vie{l,....m}) fix) <fi(x")

We could be creative and introduce an other problem without f;(x*) such as:

min Zs, s.t. filx
XERN scRM M

Not only do we need to project on Ilnearlzatlon of the constraints, but also
take into account the objective function. This leads to a stochastic proximal
method:

Xt s = argmin s; + [|(x,5) — (X', sY)[]? s.t. fi(x) + (VAi(x),x — x) < s;
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SPS with approximation : on-the-fly version

Xt s = argmin s; + [|(x,5) — (X', sY)[|? s.t. fi(x) + (VFi(x),x — xX) < s;

® This algorithm (FUVAL) admits a closed form solution (nasty)
e sl tries to converge to fi(w*)

e Extra parameters needed for the theory to work (boooo)

e Can garantee a dirty O (\Lﬁ) rate in the nonsmooth case

e Can guarantee a O (3 + A,) rate in the smooth case

® Numerics aren’t great

® To be improved! Stochastic prox methods are not well understood...
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Il : Stochastic Polyak Stepsize

4 : Would you want some momentum?
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Adam is SGD + AdaGrad + Momentum. Replace Adagrad with SPS?
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Adam is SGD + AdaGrad + Momentum. Replace Adagrad with SPS?

Momentum (v1 : Heavy Ball) Momentum (v2 : Classic)

Vi = Xe+ Be(Xe — Xe—1) m; = Bimeq + Vi (xe)

Xer1 = Y — YVfi(xe) X1 = Xe — YMy

Momentum (v3 : Iterative Moving Average)

7z = Zi1 — V(%)
Xty1 = (]_ = Oét)Xt + ozt
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Momentum : Known result

Let f; € To(RN) N C;'(RV) and run IMA with e = 1 < {7 and oy = 5%
D2
E [f0) — inff] < —

2) 2
7]7— + 770*7

® Exact same bound as SGD constant stepsize
® Momentum provides last iterate bounds

® No known acceleration
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Momentum + SPS : Smooth case

Let f; convex and locally smooth, and run IMA with n; = SPS and a; = 1+rt
: 2LD*log(T)  2+/LA.D
E [f(x") —inff] < + ,

o Like SGD+SPS but with last iterates

® Spurious log term (booo0)

Stochastic Polyak Stepsize Would you want some momentum? 33/38



Momentum + SPS : Nonsmooth case

Let f; convex and locally Lipschitz, run IMA with n, = SPS and oy = 1+rt3
GD
E [f(x") —inff]l < —.

o Like SGD+SPS but with last iterates

® No spurious log term (yay)
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What is SPS for momentum?

If you really want to know:

Definition (Momentum + SPS)

(i OO~ ) +(VFy (01) 21 —¢) )

= +
e = NEDIE
Zy =Zr 1 — 77tvfik (Xk)
Xkr1 = (1 = Ozk)Xk + auZk

We can also do SPS for Adam!
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Conclusion
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Conclusion on SPS

® Theory: great
o Nearly optimal rates in both smooth and nonsmooth
o Adaptivity to all parameters (except fi(x*))

® Practice: disputable

© Can't be used as is in every scenario

© Some promising edge cases (interpolation, distillation)

© Need for more analysis when approximating f;(x*)

© Need more algorithms like FUVAL with on-the-fly tracking of f;(x*)
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Thanks for your attention !
Any questions?

Thanks for your attention !, Any questions? 38/38
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