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Lyapunov for continuous gradient dynamics

x(t) + Vf(x(t)) = 0
A small tour of classical energies (convex smooth case):

® |[x(t) — x.|[> whose derivative is —(Vf(x(t)),x(t) — x.) <0
e f(x(t)) —inff whose derivativeis —||Vf(x(t))||* <0
o |Ix(t) — x.||? + t(f(x(t)) —inff) — gives O(1/t) rates

Second order dynamics (Nesterov, Heavy Ball) may also feature terms like

IX@)IF, (VAX(), x(t) — x.)
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Lyapunov for discrete gradient dynamics

Xey1 = Xe — YVI(xt)
A small tour of classical energies (convex smooth case):

© b —x.f?
® f(x;) —inff
o |Ix; — x.||? + t(f(x) — inff) — gives O(1/t) rates

Second order dynamics (Nesterov, Heavy Ball) may also feature terms like

l|x: — th1||2, (VI(xe), xe — x.),  (Vf(xe), Xe — Xe—1)
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THE HEAVY BALL WITH FRICTION METHOD,

I. THE CONTINUOUS DYNAMICAL SYSTEM:
GLOBAL EXPLORATION OF THE LOCAL MINIMA
OF A REAL-VALUED FUNCTION BY ASYMPTOTIC

ANALYSIS OF A DISSIPATIVE DYNAMICAL SYSTEM

H. ATTOUCH, X. GOUDOU and P. REDONT

Let us now define A = Ay /m. We finally obtain the (HBF) system
E+ Az +gVO(z)=0. (HBF)
This equation only possesses a mechanical sense when % is small.

On the other hand, we can define along every trajectory of (3.1) the energy by
1,
E(t) = 5[2t)]" + g®(x(1)).

We first observe that (3.1) and the regularity assumptions on ® automatically
imply that z(-) is C? on [0, Tyax). By differentation of E(¢), and by using (3.1), we
obtain

B(t) = (a(1),#(t) + gVB(a(t))) = ~A(0)[2. (3.4)

Thus, the function E(-) is decreasing and for all ¢ € [0, Tjax),
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A second-order gradient-like dissipative dynamical
system with Hessian-driven damping.
Application to optimization and mechanics

F. Alvarez?, H. Attouch®*, J. Bolte ", P. Redont®

Given two parameters o > 0 and 8 > 0, consider the following second-order in time system
in f:

(DIN) ¥ +aki + V2@ ()i + VP (x)=0.

Along every trajectory of (DIN) and for A > 0 define:

|
E;_(t)=k¢(x(r))+5\.{'(r)+,8V<D(x(r))|2. (1)
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Theorem 3.3. Let us assume that (hy hg) hold and let w € C([0,00[; V) N CY([0,50[; H) be a solution of

d2u du
Fr) (t) +tag ( )+ Ault) + fu(t)) +e(@u) =0, t >0,

where a > 0 and = : [0, 00[— [0, oc[ is a given differentiable function such that for all t = 0, £(t) < 0. Suppose
that the energy

1

du
Eeny(t) =5

dt

2
+ 2ault).ut) + F(u(t) +

(t) Ju(t)?

zs absolutely continuous with t[E' t)] < fo,| L(1)[2+ t) |u(t)? for a.e. t > 0. Under these conditions, we have
av = 12(0,00; H), there exists C' > 0 such that E- (t) < CJt, i;‘( ) — 0 strongly in H and if fDDO g(r)dr = <
then u(t) — 0 strongly in V as t — oo.
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Convergence rates of an inertial gradient descent
algorithm under growth and flatness conditions
Vassilis Apidopoulos, Jean-Francois Aujol, Charles H Dossal, Aude

Yn =

Tpgpl —
1
E, = (2+At)w, + —||Mzu_1
2y
wy, = F(x,) — F(z*),
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Rondepierre
n
Tn + m(xﬂ - J:u—l)
T’T (?}vc) = Yn — ’TVF(’UH)
+ Aty
— T )+tn(ﬂ"“ Tp— ])” + _" Iy — Tp— 1” -|— HJ-“ 1 - ”
bn = |Tn — Tn_1]|®> and hy, = ||z, — %2
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Introduction #2 : SGD and standard results
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The problem, the algorithm

Let f; : RN — R be convex, and minimize

min f(x) Zf,
with the Stochastic Gradient Descent (SGD) algorithm

Xer1 = Xe — Vi (x), % >0, ~U,...,m)

Rl: You can consider f(x) = E¢ [f(£,x)] with £ ~ D if you want

Rk: You can do minibatches if you want, the story will remain the same
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Smooth case: Known results

Theorem (Constant stepsize)

Let f; € To(RN) N C"*(RY) and X" Xt If e = v < 1/4L then

- T
o D?
E [f(x") — inff] < —T+27cr*,
where D := ||x° — x*|| and o2 := V[Vf;(x*)] for x* € argmin f.
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Smooth case: Known results

Theorem (Constant stepsize)

Let f; € To(RY) N C/M(RY) and X7 = LS00 ¥, If v = v < 1/4L then
D2
ST v 2
E [f(x") — inff] < T + 2702,
where D := ||x° — x*|| and o2 := V[Vf;(x*)] for x* € argmin f.

1
2L’

® o2 =0 in the deterministic or interpolation cases
® We do not assume bounded variance : V[Vfi(x;)] < C+ D||Vf(x:)|?
® Results also available for the strongly convex regime

® ~ can go up to -, requires knowing L
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Smooth case: Known results

Theorem (Constant stepsize)

Let f; € To(RY) N C/M(RY) and X7 = LS00 ¥, If v = v < 1/4L then
D2
ST v 2
E [f(x") — inff] < T + 2702,
where D := ||x° — x*|| and o2 := V[Vf;(x*)] for x* € argmin f.

® SGD does not converge with constant stepsizes (complexity available)
D? +0'

® yox zgivesa finite horizon rate of O( =), not adaptive to o?

® VX — glves a similar but asymptotic rate O(M)
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A Lyapunov argument

Complexity bounds for SGD can be derived from a simple Lyapunov
argument!
Ee = lIxe — x.* + 7 32s2 flx) — inff — 2yto?.

If E; decreases, then
T-1
Do)~ inff — 2 To? < By < £y = g — x|
s=0

from which we deduce

X0 — .|

T-1
fixr) — inff < ;;ﬂxs) —inff < 2702,

E[E¢] decreases for yvL < 1/4, see Garrigos, Gower, Handbook of convergence theorems for (stochastic) gradient methods, 2023. arXiv:2301.11235.
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1l : Better bounds with computer help
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A work (in progress) in collaboration with

Daniel Cortild Lucas Ketels Juan Peypouquet
U. Groningen U. Groningen & UPC U. Groningen

New Tight Bounds for SGD without Variance Assumption: A Computer-Aided Lyapunov Analysis, 2025. arXiv:2505.17965.
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Il : Better bounds with computer help
1 : Exploring the Lyapunov landscape
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Better Lyapunov =- Better bounds

Er = aellxe — x| + p iy (Flxs) — inff) — iy esa?.

If E; decreases, then

-1 T—1
D (flx) —inff) = > el < Er < Ey = |[xo — X.||?
s=0 s=0

from which we deduce (note er = %21;01 e:)(usually ap = 1)

= a,D?
inff < = X —|nf<—+e
f( ) f ;f s f /T TO'
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PEP: Finding Lyapunovs with SDP

Er = arlIxe = X.|I? + p oo (Fixs) — inff) — (g eso?.

(ar, p, er)l_, are feasible Lyapunov parameters if E[E;] N\, for every problem
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PEP: Finding Lyapunovs with SDP

Er = aellxe — x| + p iy (Flxs) — inff) — iy esa?.

(ar, p, er)l_, are feasible Lyapunov parameters if E[E;] N\, for every problem

There exists a (SDP) feasibility problem such that

(at, p, er)l_, are feasible < (SDP) is feasible.

Rk: O(m? 4+ mT) variables, O(T) constraints : easy for m ~ 2 and T ~ 100
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PEP: Finding Lyapunovs with SDP: How to

(at, p, er)l_, are feasible < (SDP) is feasible.
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PEP: Finding Lyapunovs with SDP: How to

(at, p, er)l_, are feasible < (SDP) is feasible.

® Main idea # 1: reformulate all constraints f € I'o(RY) N CH1(RN)

o JIW) = 1) = (Vi) y —x) = 2 IVFy) = Vx|
fy_fx_<gmy_x> = i”gy_gX“27 fy:fxeRngGRN
Proposed by Drori, Teboulle (2014), made formal by Taylor et al (2017)
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PEP: Finding Lyapunovs with SDP: How to

(at, p, er)l_, are feasible < (SDP) is feasible.

® Main idea # 1: reformulate all constraints f € I'o(RY) N CH1(RN)

® Main idea # 2: replace iterates x; with any point
|dea from Taylor, Bach (2019)
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PEP: Finding Lyapunovs with SDP: How to

(at, p, er)l_, are feasible < (SDP) is feasible.

® Main idea # 1: reformulate all constraints f € I'o(RY) N CH1(RN)
® Main idea # 2: replace iterates x; with any point

® Main idea # 3: quadratic constraints = SDP with Gram matrices
Relaxation is exact because dimension N is as large as we want
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1l : Better bounds with computer help
2 : Our results
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SGD with short step-sizes

If f; € To(RY) N C'(RN) and L < 1 then

S D? 2
E [fid!) ~inff] < 5+ 2(1@‘%).

First bounds for vL > 1/2 with no variance assumption

With variance assumptions, bias term is the “same”

Numerically : sharp

Variance explodes when yL = 1 ?? Need to relax the bias
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SGD with optimal step-size

If f; € To(RY) N C'(RN) and L — 1 then
D? (2 +¢)o?

G T c@e fore € (0,2).

E [f(x") —inff] <

® First bound for vL = 1 with no variance assumption
® Variance explodes when ¢ — 0. Topology of feasible parameters?

® ¢ =0 ok if interpolation holds
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SGD with large step-sizes

If f; € To(RY) N C'(RN) and L € (1,2) then
D? ve% g2
72— 0T 22 —AL)

E [f(x") —inff] <

® Variance explodes when T — +o0
® Numerics suggest this cannot be avoided

e Big difference with “bounded variance” settings !!
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Numerical validation with PEP

Bias term is sharp within this Lyapunov framework

T=2 Iterations T=20 Iterations T=100 Iterations
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Numerical validation with PEP

Variance term is sharp once bias term is fixed

_ T=2 Iterations, Short Step-Sizes T=2 Iterations, Large Step-Sizes
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Numerical validation with PEP

We also have rates for the strongly convex case!
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Numerical validation with PEP

We also have rates for the strongly convex case! With again a singularity!

T=1 Iterations T=2 Iterations T=5 Iterations
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Take-home messages

Bounds available for full rage 7L € (0,2)

Tricky things happen starting from 1/L

Having a bias as good as the best GD one seems impossible

Considering other Lyapunov elements seem to not improve results

Results seem invariant with number of functions m
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Thanks for your attention !
Any questions?
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