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Lyapunov for continuous gradient dynamics
ẋ(t) +∇f(x(t)) = 0

A small tour of classical energies ﴾convex smooth case﴿:

• ∥x(t)− x∗∥2 whose derivative is −⟨∇f(x(t)), x(t)− x∗⟩ ď 0

• f(x(t))− inf f whose derivative is −∥∇f(x(t))∥2 ď 0

• ∥x(t)− x∗∥2 + t(f(x(t))− inf f) −→ gives O(1/t) rates

Second order dynamics ﴾Nesterov, Heavy Ball﴿ may also feature terms like

∥ẋ(t)∥2, ⟨∇f(x(t)), x(t)− x∗⟩
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Lyapunov for discrete gradient dynamics
xt+1 = xt − γ∇f(xt)

A small tour of classical energies ﴾convex smooth case﴿:

• ∥xt − x∗∥2

• f(xt)− inf f
• ∥xt − x∗∥2 + t(f(xt)− inf f) −→ gives O(1/t) rates

Second order dynamics ﴾Nesterov, Heavy Ball﴿ may also feature terms like

∥xt − xt−1∥2, ⟨∇f(xt), xt − x∗⟩, ⟨∇f(xt), xt − xt−1⟩
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The problem, the algorithm
Let fi : RN → R be convex, and minimize

min
x∈RN

f(x) = 1

m

m∑
i=1

fi(x).

with the Stochastic Gradient Descent ﴾SGD﴿ algorithm

xt+1 = xt − γt∇fit(xt), γt > 0, it ∼ U(1, . . . ,m)

Rk: You can consider f(x) = Eξ [f(ξ, x)] with ξ ∼ D if you want

Rk: You can do minibatches if you want, the story will remain the same
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Smooth case: Known results
Theorem ﴾Constant stepsize﴿

Let fi ∈ Γ0(RN) ∩ C1,1
L (RN) and x̄T = 1

T
∑T−1

t=0 xt. If γt ≡ γ ď 1/4L then

E
[
f(x̄T)− inf f

]
ď

D2

γT + 2γσ2
∗,

where D := ∥x0 − x∗∥ and σ2
∗ := V[∇fi(x∗)] for x∗ ∈ argmin f.

• γt can go up to 1
2L , requires knowing L

• σ2
∗ = 0 in the deterministic or interpolation cases

• We do not assume bounded variance : V[∇fi(xt)] ď C+ D∥∇f(xt)∥2

• Results also available for the strongly convex regime
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Smooth case: Known results
Theorem ﴾Constant stepsize﴿

Let fi ∈ Γ0(RN) ∩ C1,1
L (RN) and x̄T = 1

T
∑T−1

t=0 xt. If γt ≡ γ ď 1/4L then

E
[
f(x̄T)− inf f

]
ď

D2

γT + 2γσ2
∗,

where D := ∥x0 − x∗∥ and σ2
∗ := V[∇fi(x∗)] for x∗ ∈ argmin f.

• SGD does not converge with constant stepsizes ﴾complexity available﴿
• γ ∝ 1√

T gives a finite horizon rate of O(D
2+σ2

∗√
T ), not adaptive to σ2

∗

• γ ∝ 1√
t gives a similar but asymptotic rate O(D

2+log(T)
T )

Introduction #2 : SGD and standard results 12 / 28



A Lyapunov argument
Complexity bounds for SGD can be derived from a simple Lyapunov
argument!

Et = ∥xt − x∗∥2 + γ
∑t−1

s=0 f(xs)− inf f− 2γtσ2
∗.

If Et decreases, then
T−1∑
s=0

f(xs)− inf f− 2γTσ2
∗ ď ET ď E0 = ∥x0 − x∗∥2

from which we deduce

f(x̄T)− inf f ď
1

T

T−1∑
s=0

f(xs)− inf f ď
∥x0 − x∗∥2

γT + 2γσ2
∗.

E[Et] decreases for γL ď 1/4, see Garrigos, Gower, Handbook of convergence theorems for (stochastic) gradient methods, 2023. arXiv:2301.11235.
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III : Better bounds with computer help
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A work ﴾in progress﴿ in collaboration with

Daniel Cortild Lucas Ketels Juan Peypouquet
U. Groningen U. Groningen & UPC U. Groningen

New Tight Bounds for SGD without Variance Assumption: A Computer‐Aided Lyapunov Analysis, 2025. arXiv:2505.17965.
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III : Better bounds with computer help
1 : Exploring the Lyapunov landscape
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Better Lyapunov⇒ Better bounds
Et = at∥xt − x∗∥2 + ρ

∑t−1
s=0 (f(xs)− inf f)−

∑t−1
s=0 esσ2

∗.

If Et decreases, then
T−1∑
s=0

(f(xs)− inf f)−
T−1∑
s=0

esσ2
∗ ď ET ď E0 = ∥x0 − x∗∥2

from which we deduce ﴾note ēT = 1
T
∑T−1

t=0 et﴿﴾usually a0 = 1﴿

f(x̄T)− inf f ď
1

T

T−1∑
s=0

f(xs)− inf f ď
a0D2

ρT + ēTσ2
∗.
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PEP: Finding Lyapunovs with SDP
Et = at∥xt − x∗∥2 + ρ

∑t−1
s=0 (f(xs)− inf f)−

∑t−1
s=0 esσ2

∗.

(at, ρ, et)Tt=0 are feasible Lyapunov parameters if E[Et] ↘ for every problem

Theorem
There exists a ﴾SDP﴿ feasibility problem such that

(at, ρ, et)Tt=0 are feasible ⇔ ﴾SDP﴿ is feasible.

Rk: O(m2 +mT) variables, O(T) constraints : easy for m ≃ 2 and T ≃ 100

Better bounds with computer help Exploring the Lyapunov landscape 18 / 28



PEP: Finding Lyapunovs with SDP
Et = at∥xt − x∗∥2 + ρ

∑t−1
s=0 (f(xs)− inf f)−

∑t−1
s=0 esσ2

∗.

(at, ρ, et)Tt=0 are feasible Lyapunov parameters if E[Et] ↘ for every problem

Theorem
There exists a ﴾SDP﴿ feasibility problem such that

(at, ρ, et)Tt=0 are feasible ⇔ ﴾SDP﴿ is feasible.

Rk: O(m2 +mT) variables, O(T) constraints : easy for m ≃ 2 and T ≃ 100

Better bounds with computer help Exploring the Lyapunov landscape 18 / 28



PEP: Finding Lyapunovs with SDP: How to
(at, ρ, et)Tt=0 are feasible ⇔ ﴾SDP﴿ is feasible.

• Main idea # 1: reformulate all constraints f ∈ Γ0(RN) ∩ C1,1(RN)

• Main idea # 2: replace iterates xt with any point
• Main idea # 3: quadratic constraints ⇒ SDP with Gram matrices
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• Main idea # 1: reformulate all constraints f ∈ Γ0(RN) ∩ C1,1(RN)

⇔

f(y)− f(x)− ⟨∇f(x), y− x⟩ ě 1
2L∥∇f(y)−∇f(x)∥2

fy − fx − ⟨gx, y− x⟩ ě 1
2L∥gy − gx∥2, fy, fx ∈ R, gx ∈ RN

Proposed by Drori, Teboulle ﴾2014﴿, made formal by Taylor et al ﴾2017﴿

• Main idea # 2: replace iterates xt with any point
• Main idea # 3: quadratic constraints ⇒ SDP with Gram matrices
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(at, ρ, et)Tt=0 are feasible ⇔ ﴾SDP﴿ is feasible.

• Main idea # 1: reformulate all constraints f ∈ Γ0(RN) ∩ C1,1(RN)

• Main idea # 2: replace iterates xt with any point
Idea from Taylor, Bach ﴾2019﴿

• Main idea # 3: quadratic constraints ⇒ SDP with Gram matrices
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PEP: Finding Lyapunovs with SDP: How to
(at, ρ, et)Tt=0 are feasible ⇔ ﴾SDP﴿ is feasible.

• Main idea # 1: reformulate all constraints f ∈ Γ0(RN) ∩ C1,1(RN)

• Main idea # 2: replace iterates xt with any point
• Main idea # 3: quadratic constraints ⇒ SDP with Gram matrices

Relaxation is exact because dimension N is as large as we want
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III : Better bounds with computer help
2 : Our results
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SGD with short step-sizes
Theorem ﴾Short step‐size﴿

If fi ∈ Γ0(RN) ∩ C1,1
L (RN) and γL < 1 then

E
[
f(x̄T)− inf f

]
ď

D2

2γT +
γσ2

∗
2(1− γL) .

• First bounds for γL ě 1/2 with no variance assumption
• With variance assumptions, bias term is the “same”
• Numerically : sharp
• Variance explodes when γL = 1 ?? Need to relax the bias
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SGD with optimal step-size
Theorem ﴾Optimal step‐size﴿

If fi ∈ Γ0(RN) ∩ C1,1
L (RN) and γL = 1 then

E
[
f(x̄T)− inf f

]
ď

D2

(2− ε)γT +
γ(2 + ε)σ2

∗
ε(2− ε)

, for ε ∈ (0, 2).

• First bound for γL = 1 with no variance assumption
• Variance explodes when ε → 0. Topology of feasible parameters?
• ε = 0 ok if interpolation holds
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SGD with large step-sizes
Theorem ﴾Large step‐size﴿

If fi ∈ Γ0(RN) ∩ C1,1
L (RN) and γL ∈ (1, 2) then

E
[
f(x̄T)− inf f

]
ď

D2

2γ(2− γL)T +
γeO(T)σ2

∗
2(2− γL)3 .

• Variance explodes when T → +∞
• Numerics suggest this cannot be avoided
• Big difference with “bounded variance” settings !!
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Numerical validation with PEP
Bias term is sharp within this Lyapunov framework

Better bounds with computer help Our results 24 / 28



Numerical validation with PEP
Variance term is sharp once bias term is fixed
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Numerical validation with PEP
We also have rates for the strongly convex case!
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Numerical validation with PEP
We also have rates for the strongly convex case! With again a singularity!
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Take-home messages
• Bounds available for full rage γL ∈ (0, 2)

• Tricky things happen starting from 1/L
• Having a bias as good as the best GD one seems impossible
• Considering other Lyapunov elements seem to not improve results
• Results seem invariant with number of functions m
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Thanks for your attention !
Any questions?
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