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What can we expect?

• Does my algorithm converge?   𝑥∞ ≔ lim
𝑘→+∞

𝑥𝑘 exists? 

• What is the nature of the limit 𝑥∞? 
Global/Local minima? Saddle?



General results

Let 0 ≪ 𝜆𝑘 ≪ 2/𝐿, then:

1) 𝑓 𝑥𝑘 is decreasing

2) if 𝑥
𝑘𝑛 → 𝑥∞ then 𝛻𝑓 𝑥∞ = 0

3) Isolated local minima are attractive

Proposition

f ∶ Rn → R is of class C𝐿
1,1 𝑥𝑘+1 = 𝑥𝑘 − 𝜆𝑘𝛻𝑓 𝑥𝑘

[Pro 1.2.3, 1.2.5 & Ex. 1.2.18] Bertsekas, Nonlinear Programming, 1999.
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Proposition

f ∶ Rn → R is of class C𝐿
1,1 𝑥𝑘+1 = 𝑥𝑘 − 𝜆𝑘𝛻𝑓 𝑥𝑘

[Pro 1.2.3, 1.2.5 & Ex. 1.2.18] Bertsekas, Nonlinear Programming, 1999.

𝑥𝑘 can have no limit !!
No convergence ≠ Lack of regularity, but rather wildness



General results

𝑥𝑘+1 = 𝑥𝑘 − 𝜆𝑘𝛻𝑓 𝑥𝑘

[Ex. 3] Palis, de Melo, Geometric Theory of Dynamical Systems: An Introduction, 1982.
H.B.Curry, The method of steepest descent for nonlinear minimization problems, 1944.

f ∶ Rn → R is of class C𝐿
1,1
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How to guarantee convergence?

• A sufficient condition for 𝑥(𝑡) to converge is 0׬
∞

ሶ𝑥 𝑡 𝑑𝑡 < ∞

 It is a classic result that `Finite Length’ implies convergence
 Converse is not true (but tricky):

𝑥𝑛 ≔ σ𝑘=1
𝑛 −1 𝑘

𝑘
→ −log(2) but  σ 𝑥𝑛+1 − 𝑥𝑛 = σ

1

𝑛
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• With 𝑠 = 𝑓(𝑥 𝑡 ) we can define 𝑦 𝑠 = 𝑥 𝑓 ∘ 𝑥 −1 𝑠 s.t. 

ሶ𝑦 𝑠 = 𝛻𝑓 𝑦 𝑠 𝛻𝑓 𝑦 𝑠
−2
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• With 𝑠 = 𝑓(𝑥 𝑡 ) we can define 𝑦 𝑠 = 𝑥 𝑓 ∘ 𝑥 −1 𝑠 s.t. 

ሶ𝑦 𝑠 = 𝛻𝑓 𝑦 𝑠 𝛻𝑓 𝑦 𝑠
−2

• So the length becomes ∞𝑠׬
𝑠0 1

‖𝛻𝑓 𝑦 𝑠 ‖
𝑑𝑠

Ignore 𝛻𝑓 𝑦 𝑠 = 0

Finite interval !
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• How to upper bound 0׬
∞

ሶ𝑥 𝑡 𝑑𝑡 = ∞𝑠׬
𝑠0 1

‖𝛻𝑓 𝑦 𝑠 ‖
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• ``Naive’’ hypothesis: 𝛻𝑓 𝑦 ≥ 𝐶 i.e. sharpness

• ``Smart’’ hypothesis: 
1

‖𝛻𝑓 𝑦 𝑠 ‖
≤ 𝜑′(𝑠) with 𝜑 ≥ 0, 𝜑 ↑

so the length is ≤ 𝜑 𝑠0 − 𝜑 𝑠∞ ≤ 𝜑(𝑠0)

• In other words 𝜑′ 𝑓 𝑥 𝑡 𝛻𝑓 𝑥 𝑡 ≥ 1 i.e. 𝜑 ∘ 𝑓 is sharp:

𝛻 𝜑 ∘ 𝑓 𝑥 ≥ 1



The Łojasiewicz property

We say that 𝑓 is Łojasiewicz at a critical point 𝑥∗ if 

𝜑′ 𝑓 𝑥 − 𝑓 𝑥∗ 𝛻𝑓 𝑥 ≥ 1,

• with 𝜑: [0,∞[→ [0,∞[ s.t. 𝜑 0 = 0, 𝜑 ↑, 𝜑 concave

• for all 𝑥 ∈ 𝑥′ ∈ 𝔹 𝑥∗, 𝛿 𝑓 𝑥∗ < 𝑓 𝑥′ < 𝑓 𝑥∗ + 𝑟 }

Definition

• 𝑓 is Łojasiewicz if it is Łojasiewicz at every critical point 

• 𝑓 is p-Łojasiewicz if it is Łojasiewicz at every critical point with

𝜑 𝑠 ≃ 𝑠1/𝑝 :

𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

Definition



The Łojasiewicz property : convergence

Let 𝑓 be Łojasiewicz and 𝜆𝑘 ∈ ]0,2/𝐿[. 

If 𝑥𝑘 is bounded, then it converges to some critical point 𝑥∞.

Theorem (convergence)

𝑥𝑘+1 = 𝑥𝑘 − 𝜆𝑘𝛻𝑓 𝑥𝑘

Łojasiewicz. Sur les trajectoires du gradient d’une fonction analytique, 1984.
Absil, Mahony, Andrews. Convergence of the Iterates of Descent Methods for Analytic Cost Functions, 2005.

Let 𝑓 be Łojasiewicz and 𝜆𝑘 ∈ ]0,2/𝐿[. For every 𝑥∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓, 

if 𝑥0 ∼ 𝑥∗ then 𝑥𝑘 converges to 𝑥∞ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓.

Theorem (capture)

f ∶ Rn → R is of class C𝐿
1,1
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Sketch of proof : show that 𝜑′ 𝑠 ≥ ‖ ሶ𝑥 𝑡 ‖
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The Łojasiewicz property : in practice

Bolte, Daniilidis, Ley, Mazet, Characterizations of Łojasiewicz inequalities […], 2010.

f ∶ Rn → R is of class C𝐿
1,1

• If 𝑓 is 𝜇-strongly convex, then it is 2-Łojasiewicz with 𝜇 = 𝜇

• If 𝑓 convex and  𝜇 𝑑 𝑥, argmin 𝑓 𝑝 ≤ 𝑓 𝑥 − inf 𝑓

Examples

𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• There is a convex function 𝑓:ℝ2 → ℝ which is not Łojasiewicz

Counter-example



The Łojasiewicz property : in practice

Łojasiewicz, Ensembles semi-analytiques, 1965.
Kurdyka, On gradients of functions definable in o-minimal structures, 1998.
Bolte, Daniilidis, Lewis, Shiota, Clarke Subgradients of Stratifiable Functions, 2007.

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

Any analytic function is p-Łojasiewicz at its critical points.  

Theorem

• Any semi-algebraic function is p-Łojasiewicz at its critical points.

• Any o-minimal function is Łojasiewicz.    

Theorem



The Łojasiewicz property : in practice

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Polynomials by parts

Examples of semi-algebraic functions
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f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Polynomials by parts

Examples of semi-algebraic functions

The class of semi-algebraic functions is stable under:

• addition, multiplication, division, sup, inf

• restriction, composition, inverse 𝑓−1

• derivative

Theorem (``Tarski-Seidenberg’’)

Coste, An Introduction to O-minimal Geometry, 2000.



The Łojasiewicz property : in practice

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Polynomials by parts

• 𝛼 𝑥 0 + 𝐴𝑥 − 𝑏 2, 𝑥 ∗, …       

Examples of semi-algebraic functions

The class of semi-algebraic functions is stable under:

• addition, multiplication, division, sup, inf

• restriction, composition, inverse 𝑓−1

• derivative

Theorem (``Tarski-Seidenberg’’)

Coste, An Introduction to O-minimal Geometry, 2000.
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f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Exponential/Logarithmic stuff

Counter-examples of semi-algebraic functions



The Łojasiewicz property : in practice

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Exponential/Logarithmic stuff

Counter-examples of semi-algebraic functions

There exists a class of functions (o-minimal structure) which:

• Includes the semi-algebraic structure

• Contains the exponential function

• Has the same stability property than the semi-algebraics

• Is also stable by integration (and resolution of 1st order ODEs)

Theorem

Speissegger, The Pfaffian closure of an o-minimal structure, 1999.



The Łojasiewicz property : in practice

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

Take-home message:

Virtually any function you can think about is Łojasiewicz, 
as long as it does not involve

ℝ → ℝ
𝑥 ↦ sin(𝑥)
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The Łojasiewicz property : in practice

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

Take-home message:

Virtually any function you can think about is Łojasiewicz, 
as long as it does not involve

ℝ → ℝ
𝑥 ↦ sin(𝑥)

So gradient descent ``always converges’’ to a critical point



The Łojasiewicz property : rates for free

Polyak, Gradient methods for the minimisation of functionals, 1963.

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

Let 𝑓 be globally 2-Łojasiewicz, 𝜆 ∈]]0,2/𝐿[[, and 𝑥𝑘 → 𝑥∗.

Then we have linear convergence :

𝑓 𝑥𝑘+1 − 𝑓 𝑥∗ ≤ 𝜃 𝑓 𝑥𝑘 − 𝑓 𝑥∗

where 𝜃 ∈ [0,1[, and 𝜽 = 𝟏 − 𝝁/𝑳 if 𝜆 = 1/𝐿.

Theorem (p=2)

• If 𝑓 strongly convex we have 𝜃 = 1 − 𝜅 2 for 𝜆 = 1/𝐿.

• If 𝑓 is [any weak s. convex notion] we have a better 𝜃.

• Rates become asymptotic if local Łojasiewicz only. 



The Łojasiewicz property : rates for free

Attouch, Bolte, On the convergence of the proximal algorithm for nonsmooth functions […], 2009.
Chouzenoux, Pesquet, Repetti, A block coordinate variable metric forward-backward algorithm, 2014.

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

Let 𝑓 be globally p-Łojasiewicz, 𝜆 ∈]]0,2/𝐿[[, and 𝑥𝑘 → 𝑥∗.

Then we have sublinear convergence :

𝑓 𝑥𝑘 − 𝑓 𝑥∗ = 𝑂 𝑘
−𝑝
𝑝−2

Theorem (p>2)

•
𝑝

𝑝−2
→ +∞ when 𝑝 ↓ 2 ; 

𝑝

𝑝−2
→ 1 when 𝑝 ↑ ∞

• Rates are matched for 𝑓 𝑥 = 𝑥𝑝



How to guarantee convergence?

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

Take-home message:

Virtually any function you can think about is Łojasiewicz, 
as long as it does not involve

ℝ → ℝ
𝑥 ↦ sin(𝑥)

So gradient descent ``always converges’’ to a critical point

What about other methods?



How to guarantee convergence?

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Nonsmooth 1st-order methods : works the same

Attouch, Bolte, Svaiter, Convergence of descent methods for semi-algebraic and tame problems […], 2013.



How to guarantee convergence?

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Nonsmooth 1st-order methods : works the same
• Projected gradient
• Forward Backward
• Douglas Rachford
• ADMM
• Adapts to Maximal Monotone theory (saddle point problems)

Attouch, Bolte, Svaiter, Convergence of descent methods for semi-algebraic and tame problems […], 2013.



How to guarantee convergence?

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Nonsmooth 1st-order methods : works the same
• Inertial (2nd order in time) methods :

Bégout, Bolte, Jendoubi, On damped second-order gradient systems, 2015. + refs within!
Li et al., Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization, 2017.

ሷ𝑥 𝑡 + 𝛼(𝑡) ሶ𝑥 𝑡 + 𝛻𝑓 𝑥 𝑡 = 0

𝑥𝑘+1 = 𝑦𝑘 − 𝜆𝛻𝑓 𝑦𝑘

𝑦𝑘 = 𝑥𝑘 +
1

1+𝛼𝑘
(𝑥𝑘 − 𝑥𝑘−1)



How to guarantee convergence?

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Nonsmooth 1st-order methods : works the same
• Inertial (2nd order in time) methods : 

• Heavy-Ball (𝛼 𝑡 ≡ 𝛼) ok
• Nesterov (𝛼 𝑡 ∼ 𝛼/𝑡) + Monotone OK pour p=2 global

Bégout, Bolte, Jendoubi, On damped second-order gradient systems, 2015. + refs within!
Li et al., Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization, 2017.

ሷ𝑥 𝑡 + 𝛼(𝑡) ሶ𝑥 𝑡 + 𝛻𝑓 𝑥 𝑡 = 0

𝑥𝑘+1 = 𝑦𝑘 − 𝜆𝛻𝑓 𝑦𝑘

𝑦𝑘 = 𝑥𝑘 +
1

1+𝛼𝑘
(𝑥𝑘 − 𝑥𝑘−1)



How to guarantee convergence?

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Nonsmooth 1st-order methods : works the same
• Inertial (2nd order in time) methods : ok 
• Newton-like (2nd order in space) methods: some results for trust-

region methods, Landweber iterations. IDK for Newton/BFGS.

Frankel, Garrigos, Peypouquet, Splitting Methods with Variable Metric […], 2015. + Absil et al., and many others.



How to guarantee convergence?

f ∶ Rn → R is of class C𝐿
1,1 𝜇(𝑓 𝑥 − 𝑓 𝑥∗ )𝑝−1 ≤ 𝛻𝑓 𝑥 𝑝

• Nonsmooth 1st-order methods : works the same
• Inertial (2nd order in time) methods : ok for Heavy-Ball
• Newton-like (2nd order in space) methods: some results for trust-

region methods, Landweber iterations. IDK for Newton/BFGS.
• Stochastic methods: (under global 2-Łojasiewicz)

• SAGA, SVRG: linear rates 
• SGD: rates 𝑂( 1/𝑘 ), and linear if vanishing variance
• SVRG + monotone Nesterov: linear rates

Reddi, Hefny, Sra, Poczos, Smola, Stochastic variance reduction for nonconvex optimization, 2016.
Karimi, Nutini, Schmidt, Linear Convergence of Gradient and Proximal-Gradient […], 2016.
Lei et al., Stochastic Gradient Descent for Nonconvex Learning without Bounded Gradient Assumptions, 2019.



What can we expect?

• Does my algorithm converge?   𝑥∞ ≔ lim
𝑘→+∞

𝑥𝑘 exists? 

• What is the nature of the limit 𝑥∞? 
Global/Local minima? Saddle?
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What is the limit? The linear case

𝐴 symmetric operator ሶ𝑥 𝑡 + 𝐴𝑥 𝑡 = 0

𝐴 =
1 0
0 1

𝐴 =
−1 0
0 −1 𝐴 =

1 0
0 −1

• Positive eigs. are attractive, negative eigs. are repulsive.

• Converging to the saddle point requires starting from 𝐸−1(𝐴)

ሶ𝑥



What is the limit? The linear case

𝐴 symmetric operator ሶ𝑥 𝑡 + 𝐴𝑥 𝑡 = 0

Let ҧ𝑥 be an equilibrium of the system. We define

𝑊 ҧ𝑥 = 𝑥 𝑥 𝑡 → ҧ𝑥 with 𝑥 0 = 𝑥}

Definition

𝑊 ҧ𝑥 ≃⊕𝜆>0 𝐸𝜆(𝐴)

Theorem

If 𝜆𝑚𝑖𝑛 𝐴 < 0, then 𝑊 ҧ𝑥 has Lebesgue measure 0.

Corollary



What is the limit? The potential case

ሶ𝑥 𝑡 + 𝛻𝑓(𝑥 𝑡 ) = 0f ∶ Rn → R is of class C2



What is the limit? The potential case

ሶ𝑥 𝑡 + 𝛻𝑓(𝑥 𝑡 ) = 0

𝑊 ҧ𝑥 is a submanifold of dimension smaller than the one of 

⊕𝜆>0 𝐸𝜆 𝛻2𝑓 ҧ𝑥

Theorem (Stable Manifold Lemma)

If 𝜆𝑚𝑖𝑛 𝛻2𝑓 ҧ𝑥 < 0, then 𝑊 ҧ𝑥 has Lebesgue measure 0.

Corollary

f ∶ Rn → R is of class C2

Perron, Die stabilitätsfrage bei differentialgleichungen, 1930. Smale, Differentiable dynamical systems, 1967.



What is the limit? The linear case

The 3 kinds of critical points:

• The local minima (e.g. 𝜆𝑚𝑖𝑛 𝛻2𝑓 ҧ𝑥 > 0) , attractive

• The strict saddles 𝜆𝑚𝑖𝑛 𝛻2𝑓 ҧ𝑥 < 0, repulsive

• The degenerated ones (they have 𝜆𝑚𝑖𝑛 𝛻2𝑓 ҧ𝑥 = 0), ???

ሶ𝑥

ሶ𝑥 𝑡 + 𝛻𝑓(𝑥 𝑡 ) = 0f ∶ Rn → R is of class C2



What is the limit? The potential case

ሷ𝑥 𝑡 + 𝛼 ሶ𝑥 𝑡 + 𝛻𝑓(𝑥 𝑡 ) = 0f ∶ Rn → R is of class C2

Goudou, Munier, The gradient and heavy ball with friction dynamical systems: the quasiconvex case, 2007.



What is the limit? The potential case

ሷ𝑥 𝑡 + 𝛼 ሶ𝑥 𝑡 + 𝛻𝑓(𝑥 𝑡 ) = 0

𝑊 ҧ𝑥 is a submanifold of dimension smaller than the one of 

⊕𝜆>0 𝐸𝜆 𝛻2𝑓 ҧ𝑥

Theorem (Stable Manifold Lemma)

If 𝜆𝑚𝑖𝑛 𝛻2𝑓 ҧ𝑥 < 0, then 𝑊 ҧ𝑥 has Lebesgue measure 0.

Corollary

f ∶ Rn → R is of class C2

Goudou, Munier, The gradient and heavy ball with friction dynamical systems: the quasiconvex case, 2007.



What is the limit? The potential case

Let 𝜆 ∈]0,1/𝐿[. Then 𝑊 ҧ𝑥 is a submanifold of dimension smaller

than the one of ⊕𝜆>0 𝐸𝜆 𝛻2𝑓 ҧ𝑥

Theorem

If 𝜆𝑚𝑖𝑛 𝛻2𝑓 ҧ𝑥 < 0, then 𝑊 ҧ𝑥 has Lebesgue measure 0.

Corollary

f ∶ Rn → R is of class C𝐿
1,1 ∩ 𝐶2

Lee, Simchowitz, Jordan, Recht, Gradient Descent Converges to Minimizers, 2016.

𝑥𝑘+1 = 𝑥𝑘 − 𝜆𝛻𝑓 𝑥𝑘

If 𝑓 has no degenerated critical points and is Łojasiewicz, then 𝑥𝑘

converges a.s. to a local minima with random initialization.

Corollary



What is the limit? The potential case

f ∶ Rn → R is of class C𝐿
1,1 ∩ 𝐶2 𝑥𝑘+1 = 𝑥𝑘 − 𝜆𝛻𝑓 𝑥𝑘

It is time now for examples.

saddle_points_descent_2D.ggb
saddle_points_descent_2D.ggb


What is the limit? The potential case

f ∶ Rn → R is of class C𝐿
1,1 ∩ 𝐶2

Li et al., Symmetry, saddle points, and global geometry of nonconvex matrix factorization, 2016.

𝑥𝑘+1 = 𝑥𝑘 − 𝜆𝛻𝑓 𝑥𝑘

If 𝑓 has no degenerated critical points and is Łojasiewicz, then 𝑥𝑘

converges a.s. to a local minima with random initialization.

Corollary

Some problems have no degenrated critical points, like the matrix 

factorization problem a.k.a. two-layer-linear-neural-network

min
𝑋∈ℝ𝑑×𝑟

𝑓 𝑋 = 𝑋𝑇𝑋 − 𝐴
𝐹

2



What is the limit? The potential case

f ∶ Rn → R is of class C𝐿
1,1 ∩ 𝐶2 𝑥𝑘+1 = 𝑥𝑘 − 𝜆𝛻𝑓 𝑥𝑘 + 𝜉𝑘

If 𝑓 has no degenerated critical points and is Łojasiewicz, then 𝑥𝑘

converges a.s. to a local minima with random initialization.

Corollary

The above result remains true for the noisy gradient method.

Corollary

The noise here must be isotropic! 

Not the case for SGD (proportional to eigenvalues), but proof can

be adapted for RKHS learning with a loss s.t. ℓ′′ = 𝑂( ℓ′ ).

Daneshmand et al., Escaping saddles with stochastic gradients, 2018.



What can we expect?

• Does my algorithm converge?   𝑥∞ ≔ lim
𝑘→+∞

𝑥𝑘 exists? 

• What is the nature of the limit 𝑥∞? 
Global/Local minima? Saddle?
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Depends strongly on :
• What your problem is
• how you initialize
Yes, this bold statement will be my conclusion
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• how you initialize
Yes, this bold statement will be my conclusion



Any questions ?




