Stochastic Optimization for Black-Box Variational Inference

Journées annuelles du GdR MOA - Université Perpignan Via Domitia Guillaume Garrigos

October 2023

A work in collaboration with

Justin Domke University of Massachusetts

Robert M. Gower Flatiron Institute

I : Introduction

Variational Inference

We have a distribution p(x, z), where x is explicit data and z is latent variable

We want to estimate p(z|x) with a simple family \mathcal{Q} : $p(\cdot|x) \sim q \in \mathcal{Q}$

Variational Inference

We have a distribution p(x, z), where x is explicit data and z is latent variable We want to estimate p(z|x) with a simple family $Q : p(\cdot|x) \sim q \in Q$

$$\min_{q \in \mathcal{Q}} \ \mathcal{KL}(q \mid\mid p(\cdot \mid x)) = \int q(z) \ln \frac{q(z)}{p(z \mid w)} dz = \mathbb{E}_z \ \ln \frac{q(z)}{p(z \mid w)}$$

Variational Inference

We have a distribution p(x, z), where x is explicit data and z is latent variable We want to estimate p(z|x) with a simple family $Q : p(\cdot|x) \sim q \in Q$

$$\min_{q \in \mathcal{Q}} \ \mathcal{KL}(q \mid\mid p(\cdot \mid x)) = \int q(z) \ln \frac{q(z)}{p(z \mid w)} dz = \mathbb{E}_z \ \ln \frac{q(z)}{p(z \mid w)}$$

Equivalently

$$\min_{q \in \mathcal{Q}} \mathbb{E}_z \ln q(z) - \mathbb{E}_z \ln p(x, z)$$
(VI)

Variational Inference : Gaussian Family

$$\min_{q \in \mathcal{Q}} \mathbb{E}_z \ln q(z) - \mathbb{E}_z \ln p(x, z)$$
(VI)

Assumption (Gaussian Family)

We assume that $Q = \{q_w \mid w \in W^+\}$, with

• $\mathcal{W} = \mathbb{R}^d \times \mathcal{M}^d$ where $\mathcal{M}^d = \mathcal{T}^d$ (lower triangular) or \mathcal{S}^d (symmetric)

•
$$\mathcal{W}^+ = \{(m, C) \in \mathcal{W} \mid C \succ 0\}$$

•
$$q_w(z) = \mathcal{N}(z|m, CC^{\top})$$

Variational Inference : Gaussian Family

$$\min_{w \in \mathcal{W}^+} \mathbb{E}_z \, \ln q_w(z) - \mathbb{E}_z \, \ln p(x, z) \tag{VI}$$

Assumption (Gaussian Family)

We assume that $\mathcal{Q} = \{q_w \mid w \in \mathcal{W}^+\}$, with

• $\mathcal{W} = \mathbb{R}^d \times \mathcal{M}^d$ where $\mathcal{M}^d = \mathcal{T}^d$ (lower triangular) or \mathcal{S}^d (symmetric)

•
$$\mathcal{W}^+ = \{(m, C) \in \mathcal{W} \mid C \succ 0\}$$

•
$$q_w(z) = \mathcal{N}(z|m, CC^{\top})$$

II : Structural properties

Properties of the entropy *h*

Proposition (Convexity of the entropy - Domke 2020)

Let $h(w) = \mathbb{E}_z \ln q_w(z) + \delta_{\mathcal{W}^+}(w)$.

1. $h(w) = -\ln \det C$ if $C \succ 0$, $+\infty$ otherwise

2. *h* is proper lower semi-continuous **convex** over $\mathcal{W} = \mathbb{R}^d \times \mathcal{M}^d$

3.
$$\operatorname{prox}_{\gamma h}(m, C) = (m, \hat{C})$$
 with $\hat{C}_{ii} \leftarrow \frac{1}{2}(C_{ii} + \sqrt{C_{ii}^2 + 4\gamma})$, if $\mathcal{M}^d = \mathcal{T}^d$

Proposition (Smoothness of the entropy - Domke 2020)

1. ∇h is *L*-Lipschitz over $\mathcal{W}_{L}^{+} = \{(m, C) \in \mathcal{W}^{+} \mid \sigma_{\min}(C) \geq \frac{1}{\sqrt{L}}\}$

2. proj_{W_t^+}(m, C) can be computed by doing a SVD on C, if $\mathcal{M}^d = \mathcal{S}^d$

Structural properties

Properties of the free energy ℓ

Proposition (Convexity and smoothness of the energy - Domke 2020)

- Let $\ell(w) = -\mathbb{E}_z \ln p(x, z)$.
- 1. If $-\ln p(\cdot, x)$ is convex then ℓ too
- 2. If $-\ln p(\cdot, x)$ is μ -strongly convex then ℓ too
- 3. If $-\ln p(\cdot, x)$ is *L*-smooth, then ℓ too

4. argmin
$$(h + \ell) \subset \mathcal{W}_{L}^{+} = \{(m, C) \in \mathcal{W}^{+} \mid \sigma_{\min}(C) \geq \frac{1}{\sqrt{L}}\}$$

Properties of the free energy ℓ

Proposition (Convexity and smoothness of the energy - Domke 2020)

- Let $\ell(w) = -\mathbb{E}_z \ln p(x, z)$.
- 1. If $-\ln p(\cdot, x)$ is convex then ℓ too
- 2. If $-\ln p(\cdot, x)$ is μ -strongly convex then ℓ too
- 3. If $-\ln p(\cdot, x)$ is *L*-smooth, then ℓ too

4. argmin
$$(h + \ell) \subset \mathcal{W}_{L}^{+} = \{(m, C) \in \mathcal{W}^{+} \mid \sigma_{\min}(C) \geq \frac{1}{\sqrt{L}}\}$$

Assumption (log-concave and smooth target)

We assume that $-\ln p(\cdot, x)$ is convex and *L*-smooth

Properties of the free energy ℓ

Assumption (log-concave and smooth target)

We assume that $-\ln p(\cdot, x)$ is convex and *L*-smooth

Example (Models with log-concave and smooth target)

- 1. Bayesian linear regression
- 2. Logistic regression
- 3. Hierarchical logistic regression

Properties of the problem

$$\min_{x \in \mathcal{W}^+} \mathbb{E}_z \, \ln q_w(z) - \mathbb{E}_z \, \ln p(x, z) = h(w) + \ell(w) \tag{VI}$$

We can consider two approaches:

и

Properties of the problem

$$\min_{z \in \mathcal{W}^+} \mathbb{E}_z \, \ln q_w(z) - \mathbb{E}_z \, \ln p(x, z) = h(w) + \ell(w) \tag{VI}$$

We can consider two approaches:

ν

h is prox-friendly, and *ℓ* is smooth : we do a proximal stochastic gradient method

• encode with $\mathcal{M}^d = \mathcal{T}^d$ so that prox_h costs O(d) operations

Properties of the problem

$$\min_{z \in \mathcal{W}^+} \mathbb{E}_z \, \ln q_w(z) - \mathbb{E}_z \, \ln p(x, z) = h(w) + \ell(w) \tag{VI}$$

We can consider two approaches:

ν

h is prox-friendly, and *ℓ* is smooth : we do a proximal stochastic gradient method

• encode with $\mathcal{M}^d = \mathcal{T}^d$ so that prox_h costs O(d) operations

2. $f = h + \ell$ is smooth over W_L^+ : we do a **projected stochastic gradient** method

• encode with
$$\mathcal{M}^d = \mathcal{S}^d$$
 so that $\operatorname{proj}_{\mathcal{W}_l^+}$ is tractable $O(d^3)$

III : Stochastic algorithms

III : Stochastic algorithms 1 : Classical theory for SGD

Stochastic algorithms Classical theory for SGD

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \gamma_t \mathbf{g}^t, \quad \mathbb{E}_z \left[\mathbf{g}^t \right] = \nabla \mathbf{f}(\mathbf{w}^t)$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \gamma_t \mathbf{g}^t, \quad \mathbb{E}_{\mathbf{z}} \left[\mathbf{g}^t \right] = \nabla f(\mathbf{w}^t)$$

Typical results in the convex setting are :

t^{-1/2} convergence when γ_t ↓ 0 : E [f(w^t) - inf f] = O (1/√t)
ε⁻² complexity when γ_t ≡ γ : E [f(w^t) - inf f] = O (1/γt + γσ²)

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \gamma_t \mathbf{g}^t, \quad \mathbb{E}_{\mathbf{z}} \left[\mathbf{g}^t \right] = \nabla f(\mathbf{w}^t)$$

Typical results in the convex setting are :

•
$$t^{-\frac{1}{2}}$$
 convergence when $\gamma_t \downarrow 0$: $\mathbb{E}[f(w^t) - \inf f] = O\left(\frac{1}{\sqrt{t}}\right)$
• ε^{-2} complexity when $\gamma_t \equiv \gamma$: $\mathbb{E}[f(w^t) - \inf f] = O\left(\frac{1}{\gamma t} + \gamma \sigma^2\right)$

Bonus : if no variance (interpolation holds) then we get better rates

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \gamma_t \mathbf{g}^t, \quad \mathbb{E}_{\mathbf{z}} \left[\mathbf{g}^t \right] = \nabla f(\mathbf{w}^t)$$

Typical results in the convex setting are :

•
$$t^{-\frac{1}{2}}$$
 convergence when $\gamma_t \downarrow 0$: $\mathbb{E}[f(w^t) - \inf f] = O\left(\frac{1}{\sqrt{t}}\right)$
• ε^{-2} complexity when $\gamma_t \equiv \gamma$: $\mathbb{E}[f(w^t) - \inf f] = O\left(\frac{1}{\gamma t} + \gamma \sigma^2\right)$

Usually require assumptions on f (regularity) and g^t (variance control):

- *f* is Lipschitz \bigcirc or ∇f is Lipschitz \bigcirc or $f(\cdot, z)$ is uniformly smooth \bigcirc
- $\mathbb{E}_{z}[\|g^{t}\|^{2}] \leq C \text{ or } C\|\nabla f(w^{t})\|^{2} \odot$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \gamma_t \mathbf{g}^t, \quad \mathbb{E}_{\mathbf{z}} \left[\mathbf{g}^t \right] = \nabla f(\mathbf{w}^t)$$

Typical results in the convex setting are :

•
$$t^{-\frac{1}{2}}$$
 convergence when $\gamma_t \downarrow 0$: $\mathbb{E}[f(w^t) - \inf f] = O\left(\frac{1}{\sqrt{t}}\right)$
• ε^{-2} complexity when $\gamma_t \equiv \gamma$: $\mathbb{E}[f(w^t) - \inf f] = O\left(\frac{1}{\gamma t} + \gamma \sigma^2\right)$

Usually require assumptions on f (regularity) and g^t (variance control):

• *f* is Lipschitz \bigcirc or ∇f is Lipschitz \bigcirc or $f(\cdot, z)$ is uniformly smooth \bigcirc

•
$$\mathbb{E}_{z}[\|g^{t}\|^{2}] \leq C \text{ or } C\|\nabla f(w^{t})\|^{2} \odot$$

We need new optimization theory for the niche properties verified by VI

III : Stochastic algorithms

2: Proximal Stochastic Gradient method for VI

Stochastic algorithms Proximal Stochastic Gradient method for VI

The Proximal Stochastic Gradient Descent method writes as:

$$w^{t+1} = \operatorname{prox}_{\gamma_t h} (w^t - \gamma_t g^t), \ \mathbb{E}[g^t] = \nabla \ell(w^t)$$

The Proximal Stochastic Gradient Descent method writes as:

$$w^{t+1} = \operatorname{prox}_{\gamma_t h} (w^t - \gamma_t g^t), \ \mathbb{E} [g^t] = \nabla \ell(w^t)$$

Lemma (The energy estimator)

If
$$u \sim \mathcal{N}(0, I)$$
 and $g_{energy}^t := -\nabla_w \ln p(x, C^t u + m^t)$, then
 $\mathbb{E}_u \left[g_{energy}^t \right] = \nabla \ell(w^t)$ and $\mathbb{E}_u \left[\| g_{energy}^t \|^2 \right] \leq A \| w - w^* \|^2 + B$

The noise bound $O(||w - w^*||^2 + 1)$ is new, but we can exploit it to get rates

The Proximal Stochastic Gradient Descent method writes as:

$$w^{t+1} = \operatorname{prox}_{\gamma_t h} (w^t - \gamma_t g^t), \ \mathbb{E} [g^t] = \nabla \ell(w^t)$$

Theorem (Rates for solving VI)

Let w^t be generated by the above method, with the **energy** estimator g^t_{energy} .

1. for a suitable $\gamma_t \downarrow 0$, we have $\mathbb{E}[f(w^t) - \inf f] = O\left(\frac{1}{\sqrt{t}}\right)$

2. for a constant
$$\gamma_t \equiv \frac{1}{LT}$$
, we have $\mathbb{E}\left[f(w^T) - \inf f\right] = O\left(\frac{1}{\sqrt{T}}\right)$

The Proximal Stochastic Gradient Descent method writes as:

$$w^{t+1} = \operatorname{prox}_{\gamma_t h} (w^t - \gamma_t g^t), \ \mathbb{E}[g^t] = \nabla \ell(w^t)$$

Theorem (General optimization result)

Let ℓ be convex and *L*-smooth, let *h* be convex. Assume the estimator is quadratically bounded : $\mathbb{E}[||g^t||^2] \leq A ||w^t - w^*||^2 + B$. If $\gamma \leq \frac{1}{L}$ then $\mathbb{E}[f(w^t) - \inf f] \simeq O\left(\frac{A}{\gamma t} + B\gamma\right)$

The Proximal Stochastic Gradient Descent method writes as:

$$w^{t+1} = \operatorname{prox}_{\gamma_t h} (w^t - \gamma_t g^t), \ \mathbb{E}[g^t] = \nabla \ell(w^t)$$

Theorem (General optimization result)

Let ℓ be μ -convex and L-smooth, let h be convex. Assume the estimator is quadratically bounded : $\mathbb{E}[||g^t||^2] \leq A||w^t - w^*||^2 + B$. If $\gamma \leq \frac{1}{L}$ then $\mathbb{E}[f(w^t) - \inf f] \simeq O(A\theta_{\gamma}^t + B\gamma)$

Stochastic algorithms Proximal Stochastic Gradient method for VI

III : Stochastic algorithms

3 : Projected Stochastic Gradient for VI

Our Projected Stochastic Gradient Descent method writes as:

$$\mathbf{w}^{t+1} = \operatorname{proj}_{\mathcal{W}_{t}^{+}}(\mathbf{w}^{t} - \gamma_{t}\mathbf{g}^{t}), \ \mathbb{E}\left[\mathbf{g}^{t}\right] = \nabla(\ell + h)(\mathbf{w}^{t})$$

Our Projected Stochastic Gradient Descent method writes as:

$$\mathbf{w}^{t+1} = \operatorname{proj}_{\mathcal{W}_{t}^{+}}(\mathbf{w}^{t} - \gamma_{t}\mathbf{g}^{t}), \ \mathbb{E}\left[\mathbf{g}^{t}\right] = \nabla(\ell + \mathbf{h})(\mathbf{w}^{t})$$

Lemma (The entropy estimator)

If
$$u \sim \mathcal{N}(0, I)$$
 and $g_{entropy}^t := g_{energy}^t + \nabla h(w)$, then
 $\mathbb{E}_u \left[g_{entropy}^t \right] = \nabla f(w^t)$ and $\mathbb{E}_u \left[\| g_{entropy}^t \|^2 \right] \leq A \| w - w^* \|^2 + B$

Our Projected Stochastic Gradient Descent method writes as:

$$\mathbf{w}^{t+1} = \operatorname{proj}_{\mathcal{W}_{t}^{+}}(\mathbf{w}^{t} - \gamma_{t}\mathbf{g}^{t}), \ \mathbb{E}\left[\mathbf{g}^{t}\right] = \nabla(\ell + h)(\mathbf{w}^{t})$$

Theorem (Rates for VI)

Let w^t be generated by the above method, with the **entropy** estimator $g^t_{entropy}$. For a suitable $\gamma_t \downarrow 0$ (or a constant $\gamma_t \equiv \frac{1}{LT}$), we have $\mathbb{E}\left[f(w^T) - \inf f\right] = O\left(\frac{1}{\sqrt{T}}\right)$

Our Projected Stochastic Gradient Descent method writes as:

$$\mathbf{w}^{t+1} = \operatorname{proj}_{\mathcal{W}_{t}^{+}}(\mathbf{w}^{t} - \gamma_{t}\mathbf{g}^{t}), \ \mathbb{E}\left[\mathbf{g}^{t}\right] = \nabla(\ell + h)(\mathbf{w}^{t})$$

Theorem (General optimization result)

Let $\ell + h$ be convex and differentiable on \mathcal{W}_{L}^{+} . Assume the estimator is quadratically bounded : $\mathbb{E}[||g^{t}||^{2}] \leq A||w^{t} - w^{*}||^{2} + B$. If $\gamma \leq \frac{1}{L}$ then

$$\mathbb{E}\left[f(w^t) - \inf f\right] \simeq O\left(\frac{A}{\gamma t} + B\gamma\right)$$

Our Projected Stochastic Gradient Descent method writes as:

$$\mathbf{w}^{t+1} = \operatorname{proj}_{\mathcal{W}_{t}^{+}}(\mathbf{w}^{t} - \gamma_{t}\mathbf{g}^{t}), \ \mathbb{E}\left[\mathbf{g}^{t}\right] = \nabla(\ell + h)(\mathbf{w}^{t})$$

Theorem (General optimization result)

Let $\ell + h$ be μ -convex and differentiable on \mathcal{W}_{L}^{+} . Assume the estimator is quadratically bounded : $\mathbb{E}[||g^{t}||^{2}] \leq A||w^{t} - w^{*}||^{2} + B$. If $\gamma \leq \frac{1}{L}$ then $\mathbb{E}[f(w^{t}) - \inf f] \simeq O(A\theta_{\gamma}^{t} + B\gamma)$

Our Projected Stochastic Gradient Descent method writes as:

$$\mathbf{w}^{t+1} = \operatorname{proj}_{\mathcal{W}_{t}^{+}}(\mathbf{w}^{t} - \gamma_{t}\mathbf{g}^{t}), \ \mathbb{E}\left[\mathbf{g}^{t}\right] = \nabla(\ell + h)(\mathbf{w}^{t})$$

Lemma (The Stick The Landing (STL) estimator)

If
$$u \sim \mathcal{N}(0, I)$$
 and $g_{STL}^t := g_{energy}^t + \nabla_w \ln q_v (C^t u + m^t)$ with $v = w^t$, then
 $\mathbb{E}_u \left[g_{STL}^t \right] = \nabla f(w^t)$ and $\mathbb{E}_u \left[|| g_{STL}^t ||^2 \right] \leq A || w - w^* ||^2 + B$
where $B = 0$ if the target distribution $p(\cdot | x)$ is a Gaussian.

Our Projected Stochastic Gradient Descent method writes as:

$$\mathbf{w}^{t+1} = \operatorname{proj}_{\mathcal{W}_{t}^{+}}(\mathbf{w}^{t} - \gamma_{t}\mathbf{g}^{t}), \ \mathbb{E}\left[\mathbf{g}^{t}\right] = \nabla(\ell + h)(\mathbf{w}^{t})$$

Theorem (Exponential rates for VI with Gaussian target)

Let w^t be generated by the above method, with the **STL** estimator g^t_{STL} . Assume that the target p is **Gaussian**. For a suitable γ_t , we have $\mathbb{E}[f(w^T) - \inf f] = O(\theta^T), \quad \theta \in [0, 1).$

IV : Conclusion

Conclusion and perspectives

- Black-box VI problems have very specific properties
 - estimator with quadratic noise $A ||w w^*||^2 + B$
 - non-global smoothness \mathcal{W}_L^+
- Required a new analysis of SGD
- Estimate how well STL works when target is Gaussian
 - What if the target is almost Gaussian?
- In practice people do SGD without projection on W⁺_L: is this needed at all?
- Can we get results without convexity but Polyak-Łojasiewicz? (we tried)

Thank you for your attention !